ANALYTICAL

83, 484-520 (1977)

BIOCHEMISTRY

A Compilation

of Amino Acid Analyses of Proteins, Polypeptides, and Peptides XII. Residues DONALD

Department

of Biochemistry, Received

M.

per Molecule-9 KIRSCHENBAUM’

College of Medicine, Brooklyn, New York

Downstate 11203

Medical

Center-SUNY.

March 7, 1977; accepted July 26, 1977

I have changed the title of the series by the addition of the words “Polypeptides, and Peptides.” I felt this was necessary if the analyses of certain of the hormones of the hypophysis and the hormones (factors) of the hypothalamus are to be included. I have decided to include in these compilations the amino acid analyses of all substances for which amino acid analyses have been published. In this paper, the twelfth in the series and the ninth reporting amino acid analyses as residues per molecule, I have added an additional 272 proteins to the compilation (1). The major portion of the data I present is devoted to amino acid analyses of peptide and protein hormones and the hormones (factors) which control their release. As with previous publications in this series I have (a) rounded off the molecular weights to the nearest thousand for weights over 10,000 and to the nearest hundred for weights under 10,000; and (b) rounded off to an integral number the number of residues of amino acid reported. In Table 1, the Protein Index, I list the proteins and the sources from which they were obtained. In Table 2, I report the amino acid analyses derived from hydrolyzates or from sequences. If the sequence is the source I have indicated it in the footnote, and I have also reported the number of asparagine and glutamine residues and other amides. In addition, if a carbohydrate analysis was done, this too was reported in the footnote. For each analysis I have given a citation to the original literature, usually the first report of the data, and, for those proteins for which the sequence data supplied the analysis, I have given a citation to the column chromatographic analysis for amino acids. This permits a comparison to be made of the analytical data supplied by chromatographic methods with the absolute results of the sequence. ’ Faculty Exchange Scholar, State University of New York. 484 Copyright 0 1917 by Academic Ress, Inc. AU rights of reproduction in any form reserved.

1SSN OW3-2697

AMINO

ACID ANALYSES

OF PROTEINS.

485

XII

ACKNOWLEDGMENTS The Library of the Downstate Medical Center College of Medicine has been the major source of all publications examined. What was not available in the library was obtained for me from other libraries. I should like to thank the librarians for their most useful and continuing assistance. During the summers of 1971-1975, I was a Library Reader at the Library of the Marine Biological Laboratory, Woods Hole, Massachusetts. I should like to thank the librarians of that library for their assistance. I thank Mr. E. Becker for copy-reading assistance and for checking references.

REFERENCE

FORTEXT

1. The last published paper in this series is Kirschenbaum, 79, 470-501.

D. M. (1977) Anal. Biochem.

NOTE ADDED IN PROOF Corrections

for Part XI: Residues per Thousand Residues, 3l

Protein index numbefl

Residues reportedb

Conversion factof

10d 29 50 55 6Oc 97 125 126 143 178

983.5 967 963 905.4 972.5 986 1014 785 1162 1039

1.017 1.034 1.038 1.104 1.028 1.014 0.986 1.273 0.860 0.9625

a This is the number referring to the protein in Paper XI. * This is the value reported in the reference cited. c To convert the values given to 1000 residues one must multiply by this factor the given values. d The half-cystine content is 7.8 and not 2 as given. Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein Protein

index index index index index index index index index index index index index index

no. no. no. no. no. no. no. no. no. no. no. no. no. no.

8: The number of residues of glycine should be 19.3 22: The number of residues of arginine should be 39 184: Proline = 82 residues. 187: Proline = 113 residues. 194: Proline = 71 residues. 245: There are an additional 70 residues of omithine 246: There are an additional 60 residues of omithine 247: There are an additional 75 residues of omithine 248: There are an additional 50 residues of omithine 249: There are an additional 78 residues of omithine 250: There are an additional 86 residues of omithine 251: There are an additional 43 residues of omithine 252: There are an additional 66 residues of omithine 253: There are an additional 52 residues of omithine

and not 193. and not 29.

present. present. present. present. present. present. present. present. present.

486 Correction

DONALD

M. KIRSCHENBAUM

for Part IX: Residues per Mole of Protein,

72

Footnote 6 should read “The amide ammonia is distributed as 20 asparagine residues and 8 glutamine residues (Goldstein, J., Konigsberg, W., and Hill, R. J. (1963) J. Biol. Chem. 238, 2016-2027).

Corrections

for Part IV: Residues per Thousand Residues, I3

Protein index no. 18: Valine = 46 residues. Protein index no. 130a: The total number of residues is 876 [including the 18 residues of hydroxyproline]. The conversion factor to bring the values to 1000 residues is 1.14. Protein index no. 149: The total number of residues is 1049.9 and a factor of 0.953 is needed to convert the values back to 1000 residues.

Corrections

for Part V: Residues per Thousand Residues, 24,5

Protein index no. 319: Tyrosine = 30 residues. There are 1022 residues reported and a factor of 0.978 is needed to convert the values reported to 1000 residues. Protein index no. 207: 983.2 residues reported and a factor of 1.016 is needed to convert the values to 1000 residues. Protein index no. 300: 1052 residues reported and a factor of 0.951 is needed to convert values to 1000 residues. Protein index no. 301: 1058 residues reported and a factor of 0.945 is needed to convert values to 1000 residues. Protein index no. 3 17: 798 residues reported and a factor of 1.25 is needed to convert values to 1000 residues. Protein index no. 328: 978 residues reported and a factor of 1.022 is needed to convert values to 1000 residues. Protein index no. 332: 1034 residues reported and a factor of 0.967 is needed to convert values to 1000 residues. Protein index no. 344: 931 residues reported and a factor of 1.074 is needed to convert values back to 1000 residues. r Kirschenbaum, Donald M. (1977) Anal. 2 Kirschenbaum, Donald M. (1975) Anal. 3 Kirschenbaum, Donald M. (1973) Anal. 4 Kirschenbaum, Donald M. (1973) Anal. 5 I should like to thank Dr. A. Reisner, information concerning these corrections.

Biochem. 79, 470-501. Biochem. 65, 466-499. Biochem. 53, 223-244. Biochem. 56, 208-236. CSIRO, N. S. W. Australia

for providing

the

AMINO

ACID ANALYSES

OF PROTEINS.

TABLE PROTEIN

1 Name 2 3 4 5

6 7 8 9

10 11 12 13 14 15 16

Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source

17 Name Source

18 Name Source

19 Name 20

21 22

Source Name Source Name Source Name Source

Hemagglutinin Lentil (Lens esculenta) Hemagglutinin, subunit H Hemagglutinin (No. 1) Hemagglutinin, subunit L Hemagglutinin (No. 1) Hirudin Leech Histone F2b Sea urchin (Parechinus angulosus) gonads Histone IIbl Rainbow trout testes Histone F3 Shark erythrocyte Histone F3 Sea urchin Histone F3 Mollusc Histone F3 Cycad Histone F3 Chicken erythrocytes Histone F3 (total) Calf thymus Histone F3 (dimer) Calf thymus Histone F3 (dimer) Duck erythrocytes Histone III Pea embryo Histone III Carp (Letiobus bubalus) testes Histone III Calf thymus Histone IV Calf thymus Histone GAR Rat tumor Histone GAR Pig thymus Histone LS Calf thymus Histone, alanine-rich arginine-rich Calf thymus

* ACTH: adrenocorticotropic

hormone.

487

XII

1 INDEX

23 24

Name Source Name Source

25

Name

26

Source Name

27 28

29 30

31 32

Source Name Source Name Source Name Source Name Source Name Source Name Source

33

Name

34

Source Name

35

Source Name

36

Source Name

37

Source Name

38

Source Name

39 40

Source Name Source Name

Histone ALK Calf thymus Histone ALG Sea urchin (Psammechinus miliaris) gonads Histone, arginine-lysinerich Calf thymus Histone AL, argininelysine-rich Calf thymus Histone Chicken erythrocytes Histone, acid-soluble from natural chromatin Calf thymus Hormone, ACTH* Porcine pituitary Hormone, ACTH Human pituitary Hormone, ACTH Ovine pituitary Hormone, ACTH Bovine pituitary Hormone, choleocystokininpancreozymin Porcine Hormone, chorionic gonadotropin, a-subunit Human placenta Hormone, chorionic gonadotropin, P-subunit Human placenta Hormone, chorionic somatomammotropin LI Human placenta Hormone, chorionic somatomammotropin 1a Monkey placenta Hormone, chorionic somatomammotropin 2” Monkey placenta Hormone, color change Crustacean Hormone, distal-retinal pigment Table

continued

DONALD

488

M. KIRSCHENBAUM

TABLE Source 41

Name Source

42 Name Source

43 Name Source 44 Name 45

Source Name

46

Source Name Source

41 Name 48

Source Name

49

Source Name Source

50

Name Source

51 Name Source

52 Name Source

53 Name Source

54 Name Source

55 Name Source

56 Name Source

Prawn (Pandalus borealis) eye stalk Hormone, follicle-stimulating Ovine pituitary Hormone, follicle-stimulating Ovine pituitary Hormone, follicle-stimulating Ovine pituitary Hormone, folhcle-stimulating Ovine pituitary Hormone, follicle-stimulating Ovine pituitary Hormone, follicle-stimulating, a-subunit Ovine pituitary Hormone, follicle-stimulating, P-subunit Ovine pituitary Hormone, follicle-stimulating Human pituitary Hormone, follicle-stimulating Human pituitary Hormone, follicle-stimulating, u-subunit Human pituitary Hormone, folhcle-stimulating, o-subunit Human pituitary Hormone, follicle-stimulating, p-subunit Human pituitary Hormone, follicle-stimulating, b-subunit Human pituitary Hormone, gastrin I and II* Porcine antra Hormone, gastrin I and II* and “Little” Human antra Hormone, gastrin “Big” Human antra

1 (Continued) 57 Name 58 59 60

61 62 63 64 65 66

Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source Name Source

67 Name Source

68 Name Source

69 Name Source

70 Name Source

71 Name Source

72 Name Source

73 Name Source

74 Name Source

75 Name Source

76 Name Source

77 Name Source

78 Name Source

79 Name Source

Hormone, gastrin I and II* Ovine antra Hormone, gastrin I and II* Bovine antra Hormone, gastrin I and IIb Canine antra Hormone, gastrin I and II* Feline antra Hormone, glucagon Porcine pancreas Hormone, glucagon Rat pancreas Hormone, glucagon Bovine pancreas Hormone, glucagon Rabbit pancreas Hormone, glucagon Human pancreas Hormone, glucagon Camel (Camelus dromedarius) pancreas Hormone, growth Equine pituitary Hormone, growth Human pituitary Hormone, growth Human pituitary Hormone, growth Bovine pituitary Hormone, growth Bovine pituitary Hormone, growth Ovine pituitary Hormone, growth Ovine pituitary Hormone, growth Ovine pituitary Hormone, hyperglycemic Cancer magister eyestalk Hormone, insulin II, alanyl chain Bonito pancreas Hormone, insulin II, glycyl chain Bonito pancreas Hormone, insulin, A chain Fin whale pancreas Hormone, insulin, B chain Fin whale pancreas

AMINO

ACID ANALYSES TABLE

80 Name Source 81 Name Source 82 Name Source 83 Name Source 84 Name Source 85 Name Source 86 Name Source 87 Name Source Name Source 89 Name Source PO Name Source 88

91 Name Source 92

Name Source

93 Name Source 94 Name Source 95 Name Source 96 Name Source 97 Name Source 98 Name Source 99 Name Source 100 Name Source 101 Name Source

Hormone, insulin, A chain Rabbit pancreas Hormone, insulin, B chain Rabbit pancreas Hormone, insulin, A chain Rat 1 pancreas Hormone, insulin, B chain Rat 1 pancreas Hormone, insuiin, A chain Rat 2 pancreas Hormone, insulin, B chain Rat 2 pancreas Hormone, insulin, A chain Mouse (Mus museums) pancreas Hormone, insulin, B chain Mouse (M. museums) pancreas Hormone, insulin Mouse (M. musculus) Hormone, insulin Mouse (M. muse&s) Hormone, insulin Mouse (Black Acomys cahirinus Hoechst) Hormone, insulin Mouse (Yellow A. cahirinus Hoechst) Hormone, insulin Mouse (Yellow A. cahirinus Geneva) Hormone, insulin, A chain Canine pancreas Hormone, insulin, I3 chain Canine pancreas Hormone, insuhn, A chain Sperm whale pancreas Hormone, insulin, B chain Sperm whale pancreas Hormone, insulin, A chain Sei whale pancreas Hormone, insulin, B chain Sei whale pancreas Hormone, insulin, A chain Elephant pancreas Hormone, insulin, B chain Elephant pancreas Hormone, insulin, A chain Caprine pancreas

OF PROTEINS.

489

XII

1 (Conrinued) 102 Source 103 Name Source 104 Name Source 105 Name Source 106 Name Source 107 Name Source Name Source 109 Name Source 110 Name Source 111 Name Source 112 Name Source 113 Name Source 114 Name Source 108

11.5 Name Source 116 Name Source 117 Name Source 118

Name Source

119 Name Source 120

Name Source

121

Name Source

Hormone, insulin, B chain Caprine pancreas Hormone, insulin, A chain Equine pancreas Hormone, insulin, B chain Equine pancreas Hormone, insulin, A chain Duck pancreas Hormone, insulin, B chain Duck pancreas Hormone, ins&n, A chain Rattlesnake (Crotalus arrox) pancreas Hormone, insulin, A chain Cattle pancreas Hormone, insulin, B chain Cattle pancreas Hormone, insulin, A chain Human pancreas Hormone, insulin, B chain Human pancreas Hormone, insulin, A chain Guinea pig pancreas Hormone, insulin, B chain Guinea pig pancreas Hormone, insulin, A chain Coypu (Hystricomorpha) pancreas Hormone, insulin, B chain Coypu (Hystricomorpha) pancreas Hormone, insulin, A chain Fish: bonito, tuna, and swordfish pancreases Hormone, insulin, B chain Fish: bonito, tuna, and swordfish pancreases Hormone, insulin, A chain Cod fish (Gadus callarias) pancreas Hormone, insulin, B chain Cod fish (G. callarias) pancreas Hormone, insulin, A chain Angler fish (Lophius piscatorius) pancreas Hormone, insulin, B chain Angler fish (L. piscaforius) pancreas

-.Table continued

490

DONALD

M. KIRSCHENBAUM

TABLE 122 Name

128

Source Name Source Name Source Name Source Name Source Name Source Name

129

Source Name

130

Source Name

131

Source Name

132

Source Name

133

Source Name

123 124 125 126 127

Source

134 Name Source

135 Name Source

136 Name Source

137 Name Source 138 Name 139 140

Source Name Source Name Source

Hormone, insulin, A chain Ovine pancreas Hormone, insulin, B chain Ovine pancreas Hormone, insulin, A chain Porcine pancreas Hormone, insulin, B chain Porcine pancreas Hormone, light-adapting Shrimp (Pandalus borealis) Hormone, /3-lipotropic Porcine pituitary Hormone, lipotropic (p-lipotropin) Porcine pituitary Hormone, lipotropic (p-lipotropin) Human pituitary Hormone, lipotropic (p-lipotropin) Ovine pituitary Hormone, lipotropic (y-lipotropin) Porcine pituitary Hormone, lipotropic (y-lipotropin) Ovine pituitary Hormone, luteinizing, P-subunit Bovine pituitary Hormone, luteinizing, a-subunit Equine pituitary Hormone, luteinizing, P-subunit Equine pituitary Hormone, luteinizing Equine pituitary Hormone, luteinizing, a-subunit Human pituitary Hormone, luteinizing, P-subunit Human pituitary Hormone, luteinizing, p-subunit Human pituitary Hormone, luteinizing Human pituitary

1 (Conrinued) 141 Name Source

142 Name Source

143 Name Source

144 Name Source

145 Name Source

146 Name Source

147 Name Source

148 Name Source

149 Name Source

150 Name Source

151 Name Source

152 Name Source

153 Name Source

154 Name 155

Source Name Source

156 Name Source

157 Name

Hormone, luteinizing, a-subunit Ovine pituitary Hormone, luteinizing, a-subunit Ovine pituitary Hormone, luteinizing, p-subunit Ovine pituitary Hormone, luteinizing, P-subunit Ovine pituitary Hormone, luteinizing Ovine pituitary Hormone, luteinizing, a-subunit Porcine pituitary Hormone, luteinizing, p-subunit Porcine pituitary Hormone, luteinizing, C-l subunit Rat pituitary Hormone, luteinizing, C-2 subunit Rat pituitary Hormone, luteinizing Rat pituitary Hormone, luteinizing hormone-releasing Porcine hypothalamus Hormone, a-melanocytestimulating Bovine pituitary Hormone, or-melanocytestimulating Porcine pituitary Hormone, cy-melanocytestimulating Equine pituitary Hormone, wmelanocytestimulating Ovine pituitary Hormone, a-melanocytestimulating Dogfish (Squalus acanrhias) pituitary Hormone, wmelanocytestimulating

AMINO

ACID ANALYSES TABLE

Source

158 Name

159

Source Name Source

160 Name Source

161 Name

162

Source Name Source

163 Name Source

164 Name Source 165

Name Source

166

Name Source

167 Name Source

168 Name Source

169 Name Source

170 Name Source

171 Name Source 172

Name Source

Monkey pituitary Hormone, P-melanocytestimulating Human pituitary Hormone, /%melanocytestimulating Bovine pituitary Hormone, P-melanocytestimulating Ovine pituitary Hormone, P-melanocytestimulating Porcine pituitary Hormone, P-melanocytestimulating Equine pituitary Hormone, @melanocytestimulating Monkey pituitary Hormone, P-melanocytestimulating Dogfish (S. acanthias) pituitary Hormone, P-melanocytestimulating Dogfish (Scyliorhinus caniculus) pituitary Hormone, aspartotocin, hormone II’ Dogfish (S. acanthias) neurohypophysis Hormone, glumitocind Ray (Raia batis) neurohypophysis Hormone, glumitocind Ray (R. clavata) neurohypophysis Hormone, glumitocin d Ray (R. naevus) neurohypophysis Hormone, glumitocind Ray (R. fullonica) neurohypophysis Hormone, isotocine Pollack (Pollachius virens) neurohypophysis Hormone, isotocine Hake (Merluccius merluccius) neurohypophysis

OF PROTEINS.

491

XII

1 (Conrinued) 173

Name Source

174 Name Source

175 Name Source 176

Name Source

177

Name Source

178

Name Source

179 Name Source

180 Name Source

181 Name Source

182 Name Source 183

Name Source

184 Name Source

185 Name Source

186 Name Source 187 Name Source

188 Name

Hormone, isotocine Whiting (G. luscus) neurohypophysis Hormone, isotocine Tuna (Germ0 alalunga) neurohypophysis Hormone, isotocine Mackerel (Scomber scombrus) neurohypophysis Hormone, isotocine Cod (G. morrhua) neurohypophysis Hormone, isotocine Carp (Cyprinus carpio) neurohypophysis Hormone, isotocin’ Bony fish (Polypterus bichir) neurohypophysis Hormone, isotocin’ Salmon (Oncorhynchus tschawytscha) neurohypophysis Hormone, mesotocin’ Viper (Vipera aspis) neurohypophysis Hormone, mesotocin’ Frog (Rana esculenta) neurohypophysis Hormone, mesotocinf Chicken (Gallus gallus) neurohypophysis Hormone, mesotocin f Goose (Anser anser) neurohypophysis Hormone, mesotocin’ Turkey (Meleagris gallopavo) neurohypophysis Hormone, mesotocin f Leopard frog (R. pipiens) neurohypophysis Hormone, mesotocinf Toad (Bufo bufo) neurohypophysis Hormone, mesotocinf African lungfish (Protopterus annectens) neurohypophysis Hormone, mesotocinf Table

continued

492

DONALD

M. KIRSCHENBAUM

TABLE Source

African lungfish (Protopterus neurohypophysis Hormone, mesotocin’ Cobra (Naja naja) neurohypophysis Hormone, mesotocinf Elaphid (Elaphe quadrivirgata) neurohypophysis Hormone, ocytocin Bovine neurohypophysis Hormone, ocytocin Porcine neurohypophysis Hormone, ocytocin Human neurohypophysis Hormone, ocytocin Equine neurohypophysis Hormone, ocytocin Finback whale (Balaenoptera physalus) neurohypophysis Hormone, ocytocin Hippopotamus (Hippopotamus amphibus) neurohypophysis Hormone, ocytocin Ovine neurohypophysis Hormone, ocytocin Ratfish (Hydrolagus collei) neurohypophysis Hormone, vasotocing Chicken (G. gallus) neurohypophysis Hormone, vasotocina Goose (A. anser) neurohypophysis Hormone, vasotocinO Turkey (M. gallopavo) neurohypophysis Hormone, vasotocinP Toad (B. bufo) neurohypophysis Hormone, vasotocing Frog (R. esculenta) neurohypophysis Hormone, vasotocin’ Viper (V. aspis) neurohypophysis

1 (Continued) 205

Name Source

206

Name Source

207

Name Source

208

Name Source

209

Name Source

210

Name Source

dolloi)

189 Name Source

190 Name Source

191 Name Source

192 Name Source

193 Name 194 195

1%

197

198

Source Name Source Name Source

Name Source

Name Source Name Source

199 Name Source 200

Name Source

201

Name Source

202

Name Source

203

Name Source

204

Name Source

211 Name Source 212

Name Source

213 Name Source

214 Name Source 215

Name Source

216

Name Source Name Source Name Source Name Source

217 218 219 220

Name Source

221 Name 222

Source Name

Hormone, vasotocin’ Cobra (N. naja) neurohypophysis Hormone, vasotocin” Elaphid (E. quadrivirgata) neurohypophysis Hormone, vasotocin9 Carp (C. carpio) neurohypophysis Hormone, vasotocina Pollack (P. virens) neurohypophysis Hormone, vasotocin9 Whiting (G. luscus) neurohypophysis Hormone, vasotocin’ Salmon (0. tschawytscha) neurohypophysis Hormone, vasotocinP Cod (G. morhua) neurohypophysis Hormone, vasotocin” Mackerel (S. scombrus) neurohypophysis Hormone, vasotocin’ Tuna (G. alalunga) neurohypophysis Hormone, vasotocin’ Bony fish (P. bichir) neurohypophysis Hormone, valitocin” Dogfish (S. acanthias) neurohypophysis Hormone, vasopressin Bovine neurohypophysis Hormone, vasopressin Human neurohypophysis Hormone, vasopressin Equine neurohypophysis Hormone, vasopressin Finback whale (B. physalus) neurohypophysis Hormone, vasopressin Hippopotamus (H. amphibus) neurohypophysis Hormone, vasopressin Ovine neurohypophysis Hormone, vasopressin

AMINO

ACID ANALYSES TABLE

Source

223 Name Source

224 Name Source

225 Name Source

226 Name 227 228 229 230 231 232

Source Name Source Name Source Name Source Name Source Name Source Name Source

233 Name Source

234 Name Source

235 Name 236 237 238 239 240 241 242

Source Name Source Name Source Name Source Name Source Name Source Name Source Name

Mouse (strains CBA/ FACAM and SF/CAM) neurohypophysis Hormone, Lys8-vasopressin Mouse (strain Peru) neurohypophysis Hormone, LyGvasopressin Porcine neurohypophysis Hormone, Lyss-vasopressin Hippopotamus (H. amphibus) neurohypophysis Hormone, parathyroid Human parathyroid Hormone, parathyroid I Bovine parathyroid Hormone, parathyroid II Bovine parathyroid Hormone, parathyroid Porcine parathyroid Hormone, proparathyroid Bovine parathyroid Hormone, polypeptide Chicken pancreas Hormone, red pigmentconcentrating Shrimp (P. borealis) nerve cells Hormone, prolactin Fish (Tilapia mossambica) rostral pars distalis Hormone, prolactin Fish (T. mossambica) caudal adenohypophysis Hormone, prolactin Bovine pituitary Hormone, prolactin Ovine pituitary Hormone, prolactin Porcine pituitary Hormone, prolactin Human pituitary Hormone, prolactin Human amniotic fluid Hormone, prolactin Rat pituitary Hormone, secretin Porcine Hormone, sexual

OF PROTEINS.

493

XII

1 (Conrinued) Source

243 Name Source

244 Name Source

245 Name Source

246 Name Source

247 Name Source

248 Name Source

249 Name Source

250 Name Source

251 Name Source

252 Name Source

253 Name Source

254 Name Source

255 Name Source

256 Name Source

257 Name Source

258 Name Source

259 Name Source

260 Name

Volvox carteri male spheroids Hormone, thyrocalcitonin Bovine Hormone, thyrocalcitonin Chicken ultimobranchial gland Hormone, thyrocalcitonin Eel pericardium and esophagus Hormone, thyrocalcitonin Human C cell tumor Hormone, thyrocalcitonin Porcine thyroid tissue Hormone, thyrocalcitonin Salmon (Oncorhynchus) ultimobranchial gland Hormone, thyrocalcitonin Rat Hormone, thyrocalcitonin Ovine Hormone, thymopoietin II Bovine thymus Hormone, thyrotropic Ovine pituitary Hormone, thyrotropic, a-subunit Human pituitary Hormone, thyrotropic, P-subunit Human pituitary Hormone, thyrotropin, component IV Human pituitary Hormone, thyrotropic, a-subunit Bovine pituitary Hormone, thyrotropic, P-subunit Bovine pituitary Hormone, luteinizingreleasing i Ovine hypothalamus Hormone, luteinizingreleasing Porcine hypothalamus Hormone, melanotropinrelease-inhibiting Table

continued

494

DONALD

M. KIRSCHENBAUM

TABLE Source

261 Name Source 262 Name Source 263 Name Source 264 Name Source 265 Name Source 266 Name Source 261 Name Source 268 Name Source 269 Name Source 270 Name Source 271 Name Source 272 Name Source 273 Name

Source

214 Name Source 275 Name Source

276 Name Source

Rat hypothalamus, stalk median eminence Hormone, melanotropinrelease-inhibiting Bovine hypothalamus Hormone, growth hormone release-inhibiting Ovine hypothalamus Hormone, thyrot~pinreleasing Ovine hypothalamus Hormone, thyrotropinreleasing Porcine hypothalamus Hydrogenase Ciosiridium pasteurianum W5 Hydrogenase 4.2 form Chromatium sp. Hydrogenase 4.4 form Chromatium sp. L-a-Hydroxyacid oxidase, isozyme A Rat liver L-a-Hydroxyacid oxidase, isozyme B Rat liver D-@-Hydroxybutyrate apodehydrogen~e Bovine heart mitochondria p-Hydroxyphenylpyruvate hydroxylase Chicken liver 3&Hydroxysteroid oxidase Brevibacterium sterolicum ~mid~olylacetolphosphate: L-glutamate aminotransferase Salmonella typhimurium Initiation factor-Ml Rabbit reticulocytes Inosine monophosphate dehydrogenase Aerobacter aerogenes Inosine monophosphate dehydrogenase Bacillus subtilis

1 (Continued) 277 Name Source 278 Name Source 279 Name Source 280 Name Source 281 Name Source 282 Name Source 283 Name Source 284 Name Source 285 Name Source 286 Name Source 287 Name Source 288 Name Source 209 Name Source 290 Name Source 291 Name Source 292 Name Source 293 Name Source 294 Name Source 295 Name Source 296 Name Source

Inosine monophosphate dehydrogenase Escherich~a coli Indole-3-glycerolphosphate synthetase E. coli Invertase, external Yeast (Saccharomyces strain FH4C) Invertase, internal Yeast Isocitrate dehydrogenase Yeast Isocitrate dehydrogenase Rhodopseudomonas spheroides Isocitrate dehydrogenase B. stearothermophilus Isocitrate dehydrogenase E. coli Isocitrate dehydrogenase Bovine heart Isocitrate dehydrogenase A. aerogenes Isocitrate dehydrogenase Azotobacter vinelandii Isocitrate dehydrogenase Porcine heart Is&rate lyase Pseudomonas ~ndigofera Isoleucyl-tRNA synthetase (EC 6.1.1.5) E. coli MRE 600 Isoleucyl-tRNA synthetase (EC 6.1.1.5.) E. coli Isoleu~yI-tRNA synthetase (EC 6.1.1.5) E. coli Isomaltase Rabbit small intestine Isomerase S. ~ph~murium Isomeroreductase S. ~phjmurium C-55 Isoprenoid alcohol phosphokinase Staphylococcus aureus

AMINO

ACID ANALYSES TABLE

297 Nume Source

298 Name 299

Source Name

@-Isopropylmalate drogenase

dehy-

OF PROTEINS.

1 (Continued) Source

300 Name

S. typhimurj~m

cu-Isopropylmalate synthase S. typhimurium strain CV123 a-Isopropylmalate synthase

495

XII

Source

301 Name Source

S. ty~him~rium

~-Isopropylm~ate tase

strain CV241 synthe-

Neurospora

ru-Isopropylmalate

synthase

S. typhimurium

o This is also known as placental lactogen. b Form I is not sulfated on the tyrosine phenolic group, while Form II is sulfated; the sequence is the same. o Asn4-ocytocin. d Ser’, Gin*-ocytocin. e Seti, Ilea-ocytocin. f IleE-ocytocin. 9 Args-ocytocin. h VaP-ocytocin. i I have used the name “hormone” for these substances for two reasons. (i) I want to include them in this table with the analyses of the hormones they influence; and (ii) they have been called hypothalamic factors (hormones) by the IUPAC-IUB Commission on Biochemical Nomenclature Recommendations (1974). [(1975) Biochemistry 14,2559-2560.1

10 10 12 6 7 4 10 18 15 10 -1

9 3 2 10 5 4

18 1

30 30 34 19 I8 15 38 53 48 29 0 --

23 9 9 25 11 17 --

52 1

Glycine Alanine Vnline Leucine Isoleucine Proline Serine Threonine Aspartic acid Glutamic acid Half-cystine Methionine Lysine Arginine Histidine Phenylalanine Tyrosine Tryptophan Amide ammonia MW x 1O-3 Reference

2

1”

Aminoacid

-

8 1

2 2 1 2 1 2

4 5 4 2 1 2 7 6 5 6 tr* -

3

2

9 0 4 4 2 3 4 4 9 13 6-01 0 3 0 1 1014 2 0 -114 -

4

6

3

4

223 ooo---o---------

tr 0 10 13 11 12 122

_ 5

2 123 18

15

6 10

6

__

12 7 6 6 10 5 15 11 2 123 18 2 4 3

12

8 7 18

7

ANALYSES

7 18

ACID

5 14 3 18 4106666 1 16 247 5.56 6 3 3 6 185 4 11

5

A~UNO

6

2 123 18 2 4 3

12 7 6 6 10 5 15

7 18

9

_ 6

12 7 6 5 10 5 15 1 1 123 18 2 5 3

7 19

10

Residues

7a

-.-If

7 18 6 12 7 6 6 10 5 15 f 2 135 18 2 4 3

11

per

OF PROTEINS,

TABLE

13

17 8

-

17 8

-

17 8

__

2 145 20 2 4 3

14 8 7 8 10 6 15

7 19

14

weight

10 9 20 20 77766 13 13 7 7 7 8 6 7 9 9 6 6 16 I7 2 11 2 2 156 146 19 18 3 2 4 4 3 3

12

molecular

POLYPEPTIDES,

2

9

12 7 5 7 10 5 1.5 11 1 127 17 2 5 2 00 108

7 19

15 7 18

16

910 10

2 119 18 2 4 3

12 7 6 6 10 5 15

of protein

AND PEV~IDES

10” 11

7 18 6 12 7 6 5 10 5 15 2 2 11” 18 2 4 3 0

17 17 7 9 8 6 11 2 7 5 6 0 1 10’2 14 2 2 4 0 4’2 12

18

2 7 5 6 0 I 10’2 14 2 2 4 0 4’2 13

17 7 9 8 6

19

412 14 14

912 14 2 2 4 0

11 7 9 8 6 16 2 7 6 6 0 1

20

14 15

6’3

20 8 3 2 5 o-

14 8 6 10 0 2

7 13 9 6 6

21

14 16

-

12’4 18 2 2 2

5 8 12 0 0

11 6 16 -14 2

14 12 4 1 3 0 11’5 17

fj 5 4

14 17 8 16

23 7 19 6 12 -14 -14 -14

22

8 12

0

9 10

0

Aspartic

Glutamic acid Half-cystine

-

Reference

x 1O-3

MW

18

3

3

Phenylalanine Tyrosine

-

2

Histidine

Tryptophan Amide ammonia

11

24

Arginine

19

0 11” -

12

11

Lysine

14

00

13

Methionine

5

3

Threonine

4

7

6 5

16

8

Serine

acid

6

Isoleucine

-16

16

Leucine

Proline

8

Valine

17

14

16

18

25

24”

Glycine

acid

Alanine

Amino

20

-

-18

0

3

4

12

15

0

0

9 12

5

4

5

6

16

8

17

14

26

8

14

22

-

16

21

-

-

o-

1233 2 3

2311

16

34

8 0

5

6

6

5

4

8

6

13

9

28

1111

5 0

2

5

21

9

5

6

6

23

7

27

23

-

11 1

2

3

4

5 0

2

0

2

4

0

2

3

3

3

29

23

-19

1

2

3

4

5 0

2

0

3

4

0

1

3

3

3

30

25

-20

1 1

3 2

1

3

4

1

5 0

2

0

3

4

0

1

3

3

3

31

26

-

11 2

3 2

11

3

4

13

5 0

2

0

3

4

0

12

3

3

3

27

3.8

321

1 1

3

2

1 0

5

0

5

2

2

1

1

2

33

28

0 823 -22

4

3 4

3

6

3

10

6 9

8

8

7

1

4

7

5

4

34

28

-22

0 924

3

1 2

12

4

1

12

11 9

10

13

22

5

12

12

8

8

35

per molecular

Residues 32

2 (Continued)

TABLE

30

22

1 1925

8

7 11

11

9

6

4

22 25

12

18

5

7

25

7

6

7

36

21

9

8

11

37

32

22

2

6

4 9

8

10

5

4

19 27

10

15

9

-26

weight

32

22

-

2

4

8 10

8

10

5

4

19 25

9

16

8

7

23

9

9

9

38

of protein

33

227

1

0

0 1

0

0

0

0

1 1

0

1

1

0

1

0

0

1

39

11

13 15

1

34

1.9

028

0

0

0 0

1

0

2

0

35

30

4 -29

6

4 6

5

2 12

36

25

1 -28

5

4 5

5

2 9

9

12

11

11

1 2

3

8

2

1 11

6

9 7

7

42

5 11

11

11 8

8

41

6 10

3

1

1

1

2

40

37

32

2 -30

4

5 7

7

3 14

7

28

21

14

15

7 13

16

17 12

13

43

39 continued

Table

33

4 -32

10

6 7

8

4 15

16

17

16

19

12

8 11

9

13 11

9

45

38

23

4 -31

8

5 5

7

3 15

17

15

14

17

11

7 10

7

12 11

8

44

16 39

2 -33

5

4

3

3

9

4

8 8

6

8

5

7

2

2

5

7

4

46

7

2

7

3

40

8

3

25

7 5

5 3

39

11

15

5

19

8

2

0

-

15 23 21

-34

20

8

20 15 11

11 10 9 10

41

33

-35

10

9 6

13

13

19

11

7

7

16

4

10

5

5

6

16 15

11 15

I

11

12

13

15

49

5

Glycine Alanine Valine Leucine Isoleucine Proline Serine Threonine Aspartic acid Glutamic acid Half-cystine Methionine Lysine Arginine Histidine Phenylalanine Tyrosine Tryptophan Amide ammonia MW x IO+ Reference

48

6

47”

Amino acid

-

43

-36

4

4

3 3

6

3

5 9 10

8

8

6

11

7 4

4

4

50

44

10

8=

0

4

4

3 3

6

3

6 9 10

8

8

7

7 4

5

4

51

3

3

738 13

46

1

1 -36 45

8

7

3

5

5 3

7

10 12 1

11 12 1 8

9

13

7

6

5

7

6

7

6

53

9

14

7

5

6

5

6

6

6

52

2 (Continued)

47

-

1

2

1 I

0

0

0

48

1 -39

2 -

49

----_I 50

1

2

0 1 1

1 1 1 2

0

0

0

0

2

112

1 0 0 0 1 1

2

0

0

8

6

5

1 0 0 1

2

0

0

0

1

2

2

57

5 1 0

3

1

2

4

0

1 0 1 0 1 0 0 1

56

6

2

1 0 0 0 1 0 0 1

5.5

2

54

50

1

2

0 1 1

0

0

0

5

1 0 0 1

0

0

1

2

2

58

51

1

2

0 1 1

0

0

2

0

5

1 0 0 1

0

0

0

2

2

59

52

1

2

0 1 1

0

0

1

0

5

1 0 0 1

0

1

0

2

2

60

53

4 -40

I

2

2

1

2

1

1

0

3

4

3

4

0

0

2

1 1 1

61

Residues per molecular weight of protein

TABLE

1

2

54

55

1 1-l ----_ ----___

2 2 222227

1

2

1 1

1 1

3

4

3

4

000004

3

4

3

4

000007

1 1 1 1

63

2 000006

1 1 1

62

56

2

1

2

1 1

3

4

3

4

1 1 1 1

64

57

2

1

2

1 1

3

4

3

4

1 1 1 1

65

58

11

2

1

2

1 1

3

4

3

4

1 1 1 1

66

59

-41

12

3

14

4 10

25

16

8

15

8 17 7 26

67

61

22 -42

1

8

13

3

63

23 -43

1

8

13

3

9

11

11

3

4

27

20

10

18

8

8

26

7

7

8

69

9

3

4

26

20

10

18

8

8

26

7

7

8

68

16

acid

Glutamic

6

1

Phenylalanine

Tyrosine

Tryptophan

x lO-3

Reference

MW

64

-4r -

13

Histidine

ammonia

13 3

13 3

Amide

11

12

Lysine Arginine

66

17 -45

1

6

13

4

4

4

4

Methionine

24

16

12

26

7

Half-cystine

25

acid

Aspartic

13

7 6

Isoleucine Proline

12

24

Leucine

12

6

Valine

Serine

7 6

14

Threonine

10

10

Glycine

Alanine

15

71

acid

70”

Amino

68

16 -46

1

666

13

13 3

11

4

4

24

16

12

13

776 668

27

7

15

9

72

69

-

1

13

13 3

11

4

4

24

16

12

12

26

7

15

9

73

72

-

21

4212

-48 -

70

1220

2

-48

2

-48

-48

7

8

-46

-as

2012 221

5

4

-48

-48

75

1

-47

12

12 3

11

4

4

23

16

12

12

24

7

15

11

74

73

-

-

0

2

1

1

0

2

3

1

0

1

4

20

3

3

76

74

-

-

0

1

0

1

0

4

4

3

0

0

2

0

1

77

0 4

0

0

0

0

4

4

2

1

2

0

2

1

75

-49

1 0

75

2 -50

0

2

3

1 2

1

0

2

3

1

1

1

0 1

4

3

2

3

79

76

-49

4

0

2

0

0 0

0

0

4

4

2

1

2

2 0

2

1

0

1

80

76

-50

2

0

2

3

1 2

1

0

2

3

1

1

1 2

0

4

3

1

3

81

per molecular

Residues 78

2 (Continued)

TABLE

76

-49

4

0

2

0

0 0

0

0

4

3

3

1

2

2 0

2

1

0

1

82

weight

76

-51

1

0

2

3

1 2

2

0

2

3

0

3 1

1

0

4

3

1

3

83

76

4 -50

0

2

0

0 0

0

0

4

3

3

1

2

2 0

2

1

0

1

84

of protein 86

1

128

77

-51 76

00000000 l-------

222--443

20222222 30323333

10111111

10221111

10101-o-

24234655

33367767

0303

1

10221111 228 3

02

42466666

3

1012

31344444

85

77

-

128

2=

0

3

87

77

-

328 228

2

4

88

77

_

3444

328 228

2

4

1111

89

Table

77

_

328 228

2

4

90

continued

77

_

328 228

2

4

91

77

-52

328 228

2

4

92

acid

Glutamic

0

0 0

2

0 4 -49

Arginine

Histidine

Phenylalanine

Tyrosine

Tryptophan

x 1O-3

Reference

MW

76

0

Lysine

ammonia

0

Methionine

Amide

4

Half-cystine

4

1

2

1

Serine

acid

0

Proline

Aspartic

2

Isoleucine

Threonine

1

2

Leucine

1

Valine

1

93a

Alanine

acid

Glycine

Amino

76

0 2 -50

2

2 3

1

1

0

2

3

1

1

1

1

0

4

3

2

3

94

80

0 4 -48

2

0 0

0

0

0

4

4

2

1

2

0

2

2

1

0

1

95

80

-49

-50

80

0 4

2

0 0

0

0

0

4

4

2

1

2

0

1

2

1

1

1

97

0 2

2

2 3

1

1

0

2

3

1

1

1

1

0

4

3

2

3

96

80

0 2 -50

2

2 3

1

1

0

2

3

1

1

1

1

0

4

3

2

3

98

76

0 4 -49

2

0 0 2

76

76

0 4 -49

2 0 2 -50

0 0

0

0

4 0

4

2

0

1

0

1

2

2

1

2

101

2 3

1

1

0 0

2 0

3

1

2

1

1

0

4

3

1

3

100

4 0

4

2

1

1

0

1

2

2

0

2

99

76

0 2 -50

2

2 3

1

1

2 0

3

1

1

1

1

0

4

3

2

3

102

per

Residues

81

0 4 -49

2

0 0

0

0

4 0

2 4

1

1

0

2

2

1

0

2

103

81

0 2 -50

2

2 3

1

1

2 0

3

1

1

1

1

0

4

3

2

3

104

molecular

2 (Continued)

TABLE

82

-53

0 5

2

0 0

0

0

4 0

5

3

0

1

1

1

2

1

0

1

105

weight

82

-50

0 2 -54

83

0 5

2

0

2 2

0 0

0

4 0

5

3

0

1

1

1

2

1

0

1

107

1 2

1

2 0

3

1

1

2

1

4

0

2

3

3

106

of protein

84

0 4 -49

2

0 0

0

0

4 0

4

2

0

2

0

1

2

2

1

1

108

84

0 2 -50

2

2 3

1

1

2 0

3

1

1

1

1

0

4

3

2

3

109

85

0 4 -49

2

0 0

0

0

0

4

4

2

1

2

0

2

2

1

0

1

110

85

0 2 -50

2

3

2

1

1

0

2

3

1

2

1

1

0

4

3

1

3

111

76

0 4 -55

1

0

1

1

0

0

4

3

2

3

1

0

1

1

1

0

2

112

76

0 2 -50

2

3

1

1

1

0

2

2

4

1

3

1

1

3

3

0

2

113

86

6 -13

0

1

0

0

1

0

1

4

2

1 5

2

0

2

1 1

1 0

114

86

3 -56

0

3

2

1

4

0

0

2

2

1 3

3

1

0

3 3

2 0

115

0

1

2

1 0

0

4

acid

acid

Leucine

Isoleucine

Proline

Serine Threonine

Aspartic

Glutamic

x lo-$

Reference

MW

87

0

2

2

87

-

-

0

Tryptophan

ammonia

1

Tyrosine

Amide

1

Phenylalanine

-

1

Histidine

-

1

0

Lysine Arginine

2

0 1

0 1

2

4

Methionine

1

3

0

4

3

Half-cystine

3

3 1

1

Valine

2

3

1

117

0

116”

Alanine

acid

Glycine

Amino

4

88

-49

0

1

1

1

1

0 0

4

2

5

0

1 0

2

1

1

0

1

118

88

2 -50

0

2

2

2

1

1 1

2

1

3

0

3 1

0

4

2

2

3

119

4

89

-49

0

1

1

1

1

0 0

4

3

4

0

1 0

2

1

1

0

1

120

89

2 -50

0

2

2

2

1

0 0

2

1

3

0

1 1

0

4

3

3

3

121

4 90

-49

0

2

0

0

0

0 0

4

4

2

0

0 1

1

2

2

1

2

122

-50

1 1

0 2 2

1

-49

90

90

0 4

2

0

0

90

0 2

2

3

2

1

1

0 0

2 0

3

4 0

4

1

0

2

1

3 4

2

3

125

1 2

0

1

124

91

-57

0 3

0

0

0

1

0

0 2

1

2

1

2

1

1 3

1

1

2

126

92

-58

1 5

3

3

2

4

10

0 2

14

5

3

3

9

5 1

3

15

8

127

per molecular

Residues

0 2 -50

2

3

2

1

0 1

2

3

1

1

1 1

0

4

3

2

3

123

2 (Continued)

TABLE

93

-

1 4

3

3

2

4

10

0 2

14

5

3

3

9

5 1

3

15

8

128

weight

94

-59

1 8

3

3

2

5

9

0 2

11

10

4

4

6

8 2

2

8

11

129

96

-60

1 6

3

3

2

5

10

0 2

16

4

4

5

5

6 2

2

13

8

130

of protein

97

-61

1 1

2

1

1

3

4

0 1

11

3

0

1

8

3 0

1

13

5

131

98

-62

1 2

2

1

1

4

4

0 1

13

2

1

3

4

4 0

1

11

5

132

101

-69

0 3

2

3

3

8

2

12 3

6

5

7

8

20

12 5

8

8

7

133

4

104

-64

-

4

2

4

5

7 1

7

5

7

5

6

4

4 4

5

4

134

continued

Table

-66

108a

1

2

3 2

10

3

1

12

7 7

7

7

16

5

8

11

5

8

138

106

-65

0

4

3 4

3

6

3

10

5 9

8

8

6

1

4

7

4

4

137

104

-64

3

104

-64

-

1

9 3 7

1 3

5

9

2

1 2

13

8

13 9 12

----

-

17 15 4 6

6

7

13

8

9 10

5 6 4

10 13

4 9

136

135

7

8

Serine

Threonine

3

10

Lysine

Arginine

27

109

-

-67

108b

MW

Reference

x lo+

1

Tryptophan Amide ammonia

-68

2-

Tyrosine

10

6

5

1

2

Phenylalanine

8

6

9 5

12

11

13

11

18

6

6

Histidine

Methionine

12 2

Half-cystine

8

7

16

Proline

acid

4

Isoleucine

acid

8

Leucine

Aspartic

11

Valine

Glutamic

7

9

8

5

140

139”

8

acid

Glycine Alanine

Amino

112

-69

-66

5

5

3

3

10

10 4

8

6

9

6

7

2

2

5

7

4

141

-

111

-66

0

5

5

3

3

10

10 4

7

6

9

6

7

2

2

5

7

5

142

115

-70

2

0

2

3

3

8

2

12 3

6

5

7

8

21

5

12

8

8

7

143

111

-71

-66

o-

2

3

3

8

2

12 3

6

5

7

8

20

5

12

8

8

7

144

116

28

-72

7

7

5

9

11

14 5

12

11

13

11

22

6

12

12

12

10

145

119

-13

6

0

5

3

3

3

10

10 4

7

4

9

6

5

2

3

4

8

4

146 8

119

-74

3

4

3

10

9 3

7

7

8

7

7

4

4

4

8

5

4

1

9

1

10 2

6

6

8

9

20

3

11

10

9

7

149

120

16 120

16

2 5 3 o3 -75 -715

3

1

10

0

12 1

3

4

6

10

21

4

13

7

11

148

7

120

31

-15

7

5

12

11

18 4

13

13

15

14

27

7

16

14

15

12

150

1

121

1 -76

1 1” 123

-

1

0

0

0

2

0

0

124

1”

1

1111111111

1

111111

10

0

0

0

0

10

11111111111

0

1

1111111

0

0

0

1111111

0

0

12

153

1”

1

1

0

0

0

0

2

0

0

0

0

154

126

-

of protein

111111 0 0

152

weight

11111

0

10

0

2 0

151

per molecular

Residues 147

2 (Continued)

TABLE

127

1”

1

1

0

0

0

0

2

0

0

0

0

155

128

-

-78

1

1

2

0

0

0

2

2

0

0

0

0

156

-” 129

1 1

1

0

0

0

0

2

13

0

0

0

0

157

2.7 131

066

1

1

2

3

1111

0

3

2

0

12

0

0

0

2 10

158

2.1 132

066

1

1

111

2

0

11

2

0

3

0

0

0

2

159

127

2.1

066

1

1

2

0

2

0

2

3

0

0

0

2 0

160

2.1 133

066

1

1

2

0

2

2

0

1

3

0

0

0

2 0

161

0

0

0

0

0

2

1

0

2

acid

acid

Alanine Valine

Leucine

Isoleucine

Proline

Serine

Threonine

Aspartic

Glutamic

1

1

1

1

066

Histidine

Phenylalanine

Tyrosine

Tryptophan

Amide

Reference

x lo+

134

2.1

2

Arginine

MW

2

Lysine

ammonia

0 1

Half-cystine Methionine

2

2

0

2

Glycine

129

2.1

0%

1

1

1

1

3

1

0 1

2

2

0

1

2

0

0

163

acid

162”

Amino

128

1.9

066

1

1

2

1

1

1

0 0

0

3

0

1

1

0

1

1

0

2

164

128

2.1

066

1

1

1

1

1

2

0 2

0

3

0

0

1

1

0

1 0

3

165

135

1’9

2

0

1

0

0

0

0

2 0

0

2

0

0

1

1

1

0 0

1

166

136, 137

1.0

380

0

1

0

0

0

0

2 0

1

1

0

1

1

1

0

0 0

1

167-170 1

1

138- 142

1.0

28’

0

1

0

0 0

143-

1.0

382

0

1

0

0 0

0

0

0 0

2

1

1

0

0

1

0 2

0

0

2

0

1

0

1

1

0 2

0

0

149

180-190

per molecular

Residues 171-179

2 (Continued)

TABLE

150-

1.0

382

0

1

0

0 0

0

0

2

1

1

0

0

1

1 1

0

0

1

157

191-198

weight

1.0 -ma

382

0

1

0

1 0

0

0

2

1

1

0

0

1

0 1

0

0

1

199-214

of protein

135

1.0

3”

0

1

0

0 0

0

2 0

1

1

0

0

1

1

1 0

0

1

215

1.0 -84b

3”

0

1

1

1 0

0

2 0

1

1

0

0

1

0

0

0 0

1

216-222

1.0 -Sk

0 382

1

1

0 0

1

2 0

1

1

0

0

1

0

0

0 0

1

223-225

Table

164

-

-

0

2

5

5

9

2

0

10

10

1

6

2

10 1

8

7

5

226

166

-

8”

1

1

2

5 4

9

2

0

11

9

1

8

2

8 3

7

7

4

228

continued

165

-

8=

1 1

2

4

5

9

2

0

11

9

0

8

2

8 3

8

7

4

227

229”

8 0

8

acid

acid

Isoleucine

Serine Threonine

Aspartic

Glutamic

41

5

22

19

9

23

11

17

20

4

1

0

1

10

0

Reference

x 1O-3

-

170

-

168

8

171

4

172

0.9

173

-

286 -87

MW

l--

110

P

Tryptophan Amide ammonia

3

0

0

Tyrosine

14

15

7

12

0

0

6

0

121

6=

0 3

12

13

0 1

1 0

12

10

1

173

-88

-87

3

5

7

11

10

6

15

17

9

15

7

24

0

12

12

234

13

11

233

0

1

232

Histidine Phenylalanine

Arginine

12 6

9 5

Lysine

0

2

1

4 0

6

1 2

1

3

3

1

231

11 0

9

9 0

3 24

8

9

42 7

230

Methionine

Half-cystine

1 0

3 2

Leucine

Proline

9

10

Valine

5 6

acid

Alanine

Glycine

Amino

2

174

-

-

8

6

7

11

9

7

6

22

22

9

15

11

11

23=

9

10

11

235

177

23

1899

2

7

6

8

11

9

7

6

22

22

9

15

11

11

23”

10

9

11

236

2--20

178

23

2091

7

6

9

13

9

4

6

24

22

5

16

7

15

26

11

9

8

237

913

29

20

15 9

10

181

-

65604

66714

11 10 77512

101011

181

-

11

10

240

182

-

8

603

28

22

12 6

12

910 24 22

13

11

239

44202

28 6-

19

15 9

9

10

25

12 9

9

238

per

Residues

molecular

2 (Continued)

TABLE

183

-

184

185

-

-95

-95

0

1

2

2

3

495

395

2

0

2 5

2

3

244

186

-

1 0 494 -

2

2

1 11

1

2 10

1

4

4 2

2

0

1 3

1

3

243

of protein

193 28

-93

9

7

13

242

392 -

4

06

311

213

416 212

0

0

19 610

113

2

241

weight

187

-

496

0

0 1

1 1

2

2 0

3

2

4

3

2

0

2 5

1

3

245

189

_

59’

0

1

1 3

0

1

1

2

2

3

5

1

2

1

1 2

2

4

246

190

-

1 5=

1

1 3

2

0

1

2

1

4

4 2

2

0

3

1

1

3

247

192

59’

1 0

0

1

1

2

0

2

3

2

5

4

2

0

5

1

0

3

248

193

597

1 0

2

1

0

1

1

2

2

3

5

2

2

1

3

1

1

4

249

194

494

3 1

I

1

1

1

1

2

1

4

2

4

2

0

3

1

1

3

250

5.6 195

699

0

2

1

0

2

5

0

0

8

4

4

3

2

0

8

6

3

1

251

8

9

7

17

11

16

14 15

Leucine

Isoleucine

Proline

Serine

Threonine

Aspartic Glutamic

3

3

7

5

Arginine Histidine

ammonia

MW x lO-3 Reference

Amide

Tryptophan

Phenylalanine Tyrosine

28 1%

4

10 -

-197

0

4

7

5

13

Lysine

Methionine

9 2

15 5

9

6

8

1

4

7

Half-cystine

acid acid

6

11

Valine

5

5

14

253

11

252”

Alanine

Acid

Glycine

Amino

198

11 o-

4

3

5

7

12 2

9 7

11

5

7

9

6

4

6

4

254

199

200

5 0

5

3

3

10

10 4

6 8

9

6

7

2

2

5

7

4

256

30 _

18

11

8

10

16

21 5

22 23

24

18

17

13

14

15

17

16

255

200

_

11 0

4

3

4

9

12 5

9 7

11

5

7

6

4

6

6

4

257

204

-103

1

1

1

0

1

1

0

0

1 0

0

0

1

1

1 0

0

0

2

258

205

-103

1

10

10

0

10

10

0

0

10 0

0

0

10

1

1 0

0

0

2

259 1

206

*103 -104

0

0

0

0

0

0

1

1 0

0

0

207

0 0 ,103 -104

0

0

0

0 0

0

0 0

0

0

1

1 0

0

0

1

261

207

1 1105

0

3

0

0

0 2

2

0

1

2

1

0

0 0

0

1

1

262

209

-

0 1103

0

0

1

0

0 0

0

1

0

0

0

1

0 0

0

0

0

263

per molecular

Residues 260

2 (Continued)

TABLE

210

-

13

6

58 12

11

12

76

81

24

26

26

38 39

22

37

32

265

59’06 212

24

23

57

14 26

14

101

86

43

48

39

76 48

61

85 120

266

98 213

19 13 -107

of protein

0 11 0 1103 -

0

1

0

0 0

0

1

0

0

0

1

0 0

0

0

0

264

weight

---

5

11

14

7

15

7 25

4

44

33

19

26

0 16

30

23

31

30

268

5

9

14

7

20

6 24

5

38

34

18

24

16

36 0

23

34

25

269

4

9

11

6

15

10 16

6

29

26

18r09

23’09

12

22 11’09

191°9

24

23

270

98’OS 40 40 32 213 214 214 213

-

19 13

24

22

57

15 27

12

101

87

44

45

38

76 50

63

83 132

267

33 217

-

65

9

219

-

16

12 19

20

61

8

9

61

54

37

43

22 40

46

44

43

39

274

continued

218

59

74

6

17

7 0

4 15

33

15

4

13

12 8

6

12

4

13

74

54

15 20

25 34

12 23

24 30

60

44

52

31

273

7 57

17

22

0

23

272

Table

49 216

5 59

17

24

14

19

31

8

57 -109a

22 44

25

19

18

36

27 31

33

271

35

33

30

22

13

19

21

27

acid

acid

Valine

Leucine

Isoleucine

Proline

Serine

Threonine

Aspartic

Glutamic

x 10-s

Reference

MW

Amide

165

221

220

7

93

38

-

25

6

Tyrosine

ammonia

32

8

Histidine Phenylalanine

-

2.5

7

Arginine

Tryptophan

63

19

25

Lysine

47

8

Methionine

14

3

139

105

96

74

62

86

81

111

116

143

216

Half-cystine

41

38

275a

Alanine

acid

Glycine

Amino

-

222

54

8

8

12

8

24

20

8

4

48

32

-110

17 -110

20

33

32

44

40

277

45 223

-

2

14

14

10

21

16

5

6

52

44

13

23

15

22

45

34

55

29

278

224

270

1501”

33

65

80

16

27

60

21

5

115

178

84

114

65

40

83

69

68

71

279

Residues

TABLE

25

135

30

31

77

29

32

85

14

0

124

165

80

151

63

38

77

73

84

115

280

per

40 226

-

3

9

12

9

16

24

5

2

38 31

30

27

18

29

32

27

30

32

281

molecular

2 (Continued)

50 227

-

5

14

17

8

18

26

11

5

38

42

26

18 23

25

35

28

43

42

282

weight

228

93

10 -112

2.5

32

10

37

66

18

101 -

76

4728

2528

41

69

51

63

88

76

283

of protein

80 229

-

-

24

14 23

28

57

8 10

75 84

36

31 34

51

58 66

75

62

284

230

-

-

2

12 9

12

17

26

13

6

43 39

22

19

17

23 26

31

36

32

285

78 231

-

-

-

13

16

23

63

9

3

90

69

39

87

28

30

48

35

80

81

286

80 232

-

7

19

17

13

24

52

8

3

70 61

39

33 42

39

60

42

76

45

287

40

9

233

-

-

12

10

15

26

11

7

37

41

19

19

17

24

32

30

34

32

288

21

158

Tryptophan

Amide

x lo+

-

19

32

102

84

Tyrosine

31

26

235

71

Phenylalanine

234

47

Histidine

61 45

23

14

91

88

46

44

48 47

222

114 94

Lysine Arginine

MW

43

Methionine

ammonia

21

Half-cystine

240

acid

Glutamic

Serine

197

90

Isoleucine Proline

120

83 80

Leucine

acid

59

156 140

Aspartic

93

Threonine

72

176

266

Glycine

Alanine Valine

83

290

acid

289”

Amino

237

114

236

112

33 -

-

30

24

67 44

21

7

83

101

55

55

43 44

83

81

107

82

292

-

25

33

32

25

65 49

25

15

99

99

48

46

49 47

77 80

82 100

291

41

21 46

25 43

12

96

238

100

-

-

114

68

42

48 50

65

50

42

50

293

Residues

TABLE

13

3

7

6

-

239

240

57

6

17

17

8

22

5

33

15

17

56 5

50

22

12

3

33 4

26

29

-

19 24

11 12

28

49

33

57

49

295

15

27

29

27

28

294

per molecular

2 (Continued) weight

17 241

-

4

4

10

3

5

8

4

8 0

8

8

8

4

23

23

11

14

9

296

of protein

70 242

-

17 7

13 22

37

28

15

9

67

22 68

37

42 33

58

33

74

58

297

48

11

243

-

13 13

25

28

9

5

50

23 49

24

25 14

28

31

39

30

298

48

9

243

-

12 13

21

26

11

5

51

21 48

22

22 16

30

28

37

31

299

-

14 66

Table

244

143

-

18

35

22 47

79 71

16

21

140

143

continued

245

48

11

11

13 13

28 2.5

9

5

50

49

23

24

75 82

28 25

31

39

30

301

100 62

94

107

97

300

to Table

2

o!See Table 1 for identification of protein, polypeptide, or peptide. 1 - Not done. 2 tr, Trace. 3 From sequence; plus 1 residue e-N-methyllysine. * Amino acid analyses and a previously suggested sequence may be found in Refs. (7b,c). 5 Includes 1 residue of methyllysine with dimethyllysine predominating; some trimethyllysine detected. 8 Includes 1 residue of methyllysine. ’ Plus 2 residues of methyllysine, with the monomethyl derivative predominating and a small amount of dimethyl derivative. * From sequence; the amide ammonia is distributed as 1 asparagine and 9 glutamine residues. 9 Plus 2 residues of methyllysine. lo From sequence; the amide ammonia is distributed as 1 asparagine and 8 glutamine residues. ” Plus 2 residues of methyllysine. From the sequence; the amide ammonia is distributed as 2 asparagine and 8 glutamine residues. i* Plus 1 residue of methyllysine. From the sequence; the amide ammonia is distributed as 2 asparagine and 2 glutamine residues. There are also 2 acetyl groups present; one is on the N-terminal amino acid. See also Ref. (12b). I3 From sequence; the amide ammonia is distributed as 3 asparagine and 3 glutamine residues. I4 There are 6 or 7 residues of isoleucine, 6 or 7 residues of proline, 4 or 5 residues of serine, 1 or 2 residues of half-cystine and 1 or 2 residues of methyllysine. i5 From sequence; the amide ammonia is distributed as 6 asparagine and 5 glutamine residues. The N-terminus is acetylated.

Footnotes

I6 5 or 6 residues of proline. i7 From sequence; the amide ammonia is distributed as 6 asparegine and 7 glutamine residues. There is an N-terminal acetyl group. is From sequence; there is an N-terminal acetyl group. The same composition is obtained from analysis of 24- and 72-hr hydrolysates. I9 See Ref. (24). 2oSee Ref. (26). *I From sequence: the amide ammonia is distributed as 1 asparagine residue, 1 glutamine residue, and 1 C-terminal amide. One tyrosine exists as a phenolic sulfate ester. 22There are 9 residues of galactose, 9 residues of mannose, 1 residue of fucose, 11 residues of N-acetylglucosamine, 3 residues of N-acetylgalactosamine, and 8 sialic acid residues (29). *3 From sequence; the amide ammonia is distributed as 5 glutamine and 3 asparagine residues. *4 From sequence; the amide ammonia is distributed as 5 glutamine and 4 asparagine residues. 25 From sequence; the amide ammonia is distributed as 7 asparagine and 12 glutamine residues or as 6 asparagine and 12 glutamine residues (31). 266 or 7 residues of isoleucine. 27From sequence; there is 1 asparagine residue and 1 terminal amide. 28Analyses uncorrected for incomplete hydrolysis or destruction during hydrolysis. 29There are 20 or 21 residues of hexoses, 1 residue of fucose, 15 residues of glucosamine, and 5 residues of sialic acid. Galactosamine is absent (35). 3o Carbohydrate content in percentage: total hexose, 9.7; mannose, 3.1; galactose, 3.6; total hexosamine, 4.5; glucosamine, 3.1; galactosamine, 1.4; fucose, 0.6; sialic acid, 5.4.

8 3

g 2 E; s x s g

WI 22

3123,000 is the amino acid portion of the total weight of FSH which is considered to weigh 33,000 (38). 32Carbohydrate content in residues per mole: glucosamine, 14; galactosamine, 2; fucose, 2; mannose, 10; galactose, 5; sialic acid, 6. 3aCarbohydrate content in residues per mole: glucosamine, 7; galactosamine, 1; fucose, 0.4; mannose, 5; galactose, 2; sialic acid, 2. 34Carbohydrate content in residues per mole: glucosamine, 9: galactosamine, 1; fucose, 2; mannose, 5; galactose, 4; sialic acid, 5. 3sAnother amino acid analysis can be found in Ref. (42). 36 From sequence; carbohydrate is present. 3’ From sequence; the amide ammonia is distributed as 4 glutamine and 4 asparagine residues. Amino acid analyses by column chromatographic method can be found in Ref. (46). s8From sequence, the amide ammonia is distributed as 3 glutamine and 4 asparagine residues. Amino acid analysis by column chromatographic method can be found in Ref. (46). ** Zollinger-Ellison tumor fractions analyzed [Gregory, R. A., Tracy, H. J., Agarwal, K. L., and Grossman, M. I. (1969) Gut 10, 603-6081. 40From sequence; the amide ammonia is distributed as 3 glutamine and 1 asparagine residues. From electrophoretic examination of other glucagons it would appear that all have the same number of amide groups (54-58). 41 From sequence; column chromatographic analysis can be found in Ref. (60). 12 From sequence; the amide ammonia is distributed as 9 asparagine and 13 glutamine residues. Column chromato~aphic analysis can be found in Ref. (62). 43 From sequence; the amide ammonia is distributed as 9 asparagine and 14 glutamine residues. 44 Thirty percent of the molecules have leucine replaced by vahne (65). Reported here is the amino acid analysis of the leucine sequence. *5 From sequence; the amide ammonia is distributed as 6 asparagine and 11 glutamine residues. The analysis of the leucine sequence is cited here (see footnote 44). Column chromatographic analyses cited in Ref. (67). * From sequence; the amide ammonia is distributed as 5 asparagine and 11 glutamine residues. 47 Amino acid analyses by column chromatography cited in Ref. (71). 48 Arginine, 3 or 4 residues: threonine, 2 or 3 residues; serine, 4 or 5 residues; glycine, 5 or 6 residues; alanine, 4 or 5 residues; half-cystine, 1 or 2 residues; methionine, 2 or more residues. 4g From sequence; the amide ammonia is distributed as 2 asparagine and 2 glutamine residues. Jo From sequence; the amide ammonia is distributed as 1 asparagine residue and 1 glutamine residue. 51 From sequence; the amide ammonia is distributed as 1 glutamine residue. In Ref. (78) can be found the analysis of insulin from SpragueDawley rat. s2 See Ref. (79) for additional analyses of mouse insulins. 53 From sequence; the amide ammonia is distributed as 3 asparagine and 2 glutamine residues. 54 The data for the p-chain is not correctly described in Ref. (83). 65 From sequence; the amide ammonia is distributed as 3 glutamine and 1 asparagine residues; see also Ref. (86). SeFrom sequence; the amide ammonia is distributed as 1 asparagine and 2 glutamine residues. I7 From sequence; the amide ammonia is distributed as 2 asparagine residues and 1 C-terminal amide. Table continued

s z s E 2

;I E

2 $

b E;

0

Footnotes to Table 2 continued s8 From sequence; the amide ammonia is distributed as 3 ~utamine and 2 asparagine residues. 59 From sequence; the amide ammonia is distributed as 3 glutamine and 5 asparagine residues. See also Ref. (95). W From sequence; the amide ammonia is distributed as 4 glutamine and 2 asparagine residues. See also Refs. (99) and (100) for column chromatographic amino acid analyses and revision of previous structure. E1From sequence; the amide ammonia is assigned to 1 residue of glutamine. OzFrom sequence; the amide ammonia is assigned to 2 residues of glutamine. es From sequence; an N-terminal acyl group is present. The amide ammonia is distributed as 2 glutamine and 1 asparagine residues. Carbohydrate has been reported as follows (values expressed per milligram without correction for moisture and ash). Subunit CI: sugars, totalamount, 152 pg; fucose 0.037 pmol; mannose, 0.46 Kmol; galactose, trace; glucose, trace; N-acetylglucosamine, 0.288 or 0.112 pmol (an error was made in printing and one of these values refers to something else) (102). Subunit CII: sugars, total amount, 109 pg; fucose, 0.060 pmol; mannose, 0.232 pmol; Nacetylglucosamine, 0.191 or 0.120 (an error was made in printing and one of these values refers to something else) (102). Carbohydrate has also been reported as follows (103) in relative numbers of residues and the assumption of 10% moisture. Subunit CI: fucose, 0.4; mannose, 6.8; galactose, 0.1; glucosamine, 5.3; galactosamine, 1.6. Subunit CII: fucose, 0.7; mannose, 2.5; galactose, 0; glucosamine, 3.6; g~actosamine, 1.4. Intact luteinizing hormone; fucose, 1.6; mannose, 8.7; glucosamine, 8.7; galactosamine, 3.6. Amino acid analyses done by column chromatography may be found in Refs. (102) and (103).

61 Carbohydrate reported as grams per 100 g (piven in order of a-subunit, psubunit, and hormone): fucose, 0.34,0.67,0.60; mannose, 5.37,2.62,4.32; galactose, 1.75, 3.65, 3.31; glucosamine, 5.73, 4.82, 4.72; galactosamine, 1.59, 1.64, 2.90; sialic acid, 4.97, 9.47, 7.70 (104). An earlier carbohydrate analysis can be found in Ref. (105). 85 From sequence. Column chromatographic amino acid analyses can be found in Refs. (106) and (107). Carbohydrate analyses (reported as residues per mole assuming 5.0 residues of valine): fucose, 0.5; mannose, 4.3; galactose, 2.2; glucosamine, 7.2; galactosamine, 1.1; sialic acid, 0.2 (107). W From sequence. w From sequence; an N-terminal acyl group is also reported (109). Column chromatographic analyses can be found in Ref. (107). Carbohydrate analysis (reported as residues per mole assuming 9 residues of valine): fucose, 0.6; mannose, 2.0; galactose, 0.9; glucosamine, 3.3; galactosamine, 0.5; sialic acid, 0 (107). W Amino acid analyses were reported for three different times of hydrolysis: 24, 48, and 72 hr. I have taken the 72-hr results for aIJ amino acids, except that the 26hr result was used for threonine, serine, and methionine. The value for tyrosine is 5 or 6 residues. All results are uncorrected for hydrolytic destruction, moisture, and ash. Carbohydrate results, reported as residues per 27,OOOg, are: sialic acid, 1.6; hexoses, 18.1; hexosamine, 7.5. See also Refs. (110) and (111). m Column chromatographic analysis can be found in Refs. (112), (113), and (114). Carbohydrate analyses for subunits A and B prepared by countercurrent distribution and by sulfitolysis and chromatography can be found in Ref. (113). ‘O From sequence; the amide ammonia is distributed as 2 glutamine residues and 1 carbohydrate-blocked asparagine residue. Column chromatographic analysis can be found in Ref. (115).

2 s $

z

k E

” AR N-terminal acyl group is present. 72 Hydrolysis in 6 N HCl for 24 hr. No corrections made for decomposition losses. Carbohydrate: (6hr hydrolysis in 4 N HCl; reported as residues per 28,300 daltons): glucosamine, 7; galactosamine, 3.2. Additional chromatographic analyses may be found in Refs. (117), (118), and (113) and additional carbohydrate results in Ref. (117). t3 From sequence; the amide ammonia is distributed as 2 glutamine and 4 asparagine residues of which 2 asparagine residues have carbohydrate attached. 74From sequence; the amide ammonia is distributed as 2 glutamine and 1 asparagine residues of which 1asparagine has carbohydrate attached. There is an N-terminal acyl group. There is a possible form with 1 arginine residue replaced by a glutamyl residue. r5 Carbohydrate (reported as residues per mole in the order C-t, C-2, intact hormone): giucosamine, 8, 4, 13; galactosamine 1, 1, 3; galactose, I, I, 2; mannose, 3, 2, 6; fucose, 1, 1, 2. 78 From sequence. See Ref. (122) for column chromatographic analysis. 77 From sequence. There is an N-terminal acyl group and the amide is C-terminal. See Ref. (125). 78 Some 50% of the molecules are C-terminal amidated. A tyrosyl dogfish hormone is mentioned here; it has 1 tyrosine residue in addition to the other residues of the a-MSH (130). From sequence. rB From sequence; amide ammonia is distributed as an asparagine residue and a C-terminal glycine amide. so From sequence; the amide ammonia is distributed as 1 asparagine residue, 1 glutamine residue, and 1 C-terminal glycine amide. *I From sequence; the amide ammonia is distributed as 1 asparagine residue and 1 C-terminal glycine amide. Table

continued

8ZFrom sequence; the amide ammonia is distributed as 1 asparagine residue, 1 glutamine residue, and 1 C-terminal glycine amide. *3 From enzymatic hydrolysis and from sequence; the amide ammonia is distributed as 5 glutamine residues and 3 asparagine residues (165,166). Amino acid analyses of interest can be found in Ref. (167). BdFrom enzymatic digestion (169) and sequence (168); the amide ammonia is distributed as 5 glutamine residues and 3 asparagine residues. 84itReferences (139,140,142-145,147,149,158-1~). WJ References (152-156,161,162). ** References (155,162,163). 85 From sequence; the amide ammonia is distributed as 3 glutamine residues, 2 asparagine residues, and 1 C-terminal amide. SfiFrom sequence; the amide ammonia is distributed as 1 asparagine residue and 1 C-terminal amide. a1 Uncorrected for hydrolytic destruction; results calculated on basis of 196 residues per mole, excluding tryptophan. BBThis preparation contains carbohydrate. 89 In the amino acid content, Ref. (175) reports one less leucine residue in the sequence. Column chromatographic analysis can be found in Ref. (176). e0 From sequence; the amide ammonia is distributed as 11 asparagine residues and 7 glutamine residues. Although 22 leucine residues are reported in Ref. (177), the correct number is 23 residues (178). 111From sequence; the amide ammonia is distributed as 12 asparagine residues and 8 glutamine residues. Column chromatographic analysis can be found in Refs. (178-180). 92 From sequence; the amide ammonia is distributed as 2 glutamine residues and 1 C-terminal amide.

Ln z

% 9 3 ffZ p x E

5 g v,

ki?

b F3

Liz

$2

to Table

2 continued

s3Results based on 2 residues of histidine per 15,000 MW. There are 8 or 9 arginine residues, and the presence of tryptophan is questionable. Carbohydrate analysis gave the fobllowing results (in percentages): arabinose, 6.6; xylose, 25.5; mannose, 15.6; galactose, 4.4; glucose, 32.5; acetylglucosamine, 3.9; unknown peak, 11.3. s4 From sequence; the amide ammonia is dist~buted as 3 asparagine residues and I C-terminal amide. g5Aspartic acid; 1 or 2 residues; tyrosine, 0 or 1 residue; serine and threonine values not corrected for losses during hydrolysis. BBFrom sequence: amide ammonia is distributed as 1 asparagine residue, 2 glutamine residues, and 1 C-terminal amide. Column chromatographic analyses can be found in Ref. (188). *’ Prom sequence; amide ammonia is dist~buted as 2 asparagine residues, 2 glutamine residues, and t C-terminal amide. s8 From sequence; amide ammonia is dist~buted as 4 asparagine residues and I C-terminal amide, In Ref. (191) the structure of porcine calcitonin-I is reported. The analysis is exactly the same as No. 247. O9From sequence; the amide ammonia is distributed as 4 glutamine and 2 asparagine residues. There is an error on p. 362 of Ref. (19.5) in the paragraph “amino acid composition of TPII:” 4 proline residues are reported as present in the sequence but there are only 2 residues. loo No correction made for moisture or ash. Values adjusted to 14.4 residues of aspartic acid which has been rounded off to I4 residues; 3.3 residues of glucosamine and 1.0 residue of galactosamine present. lo* From sequence; column chromatographic analysis can be found in Ref. (197).

Fooinotes

lo2 From sequence; amino acid analyses and carbohydrate analyses can also be found in Refs. (202) and (203). Carbohydrate analyses from Ref. (201): a-subunit, p-subunit (residues per molecule): fucose, 0.3, 0.9; mannose, 5.8, 2.5; galactose, 0.2, 0; glucosamine, 6.4,3.1; galactosamine, 2.5, 1.5. rM From sequence; there is a C-terminal amide. See Ref. (211). lo4 A recent report states that this is inactive (208). ‘05 From sequence; there is 1 asparaghte residue. *06This molecular weight includes 12 atoms of iron and sulfur. lo7 There are 3.7 atoms of iron and 4.0 atoms of sulfide in 4.2 form. ‘OSThere are 3.6 atoms of iron and 3.9 atoms of sulfide in 4.4 form. log These values have not been corrected for low recoveries due to degradation or nonrelease during hydrolysis. rosa3 half-cystine residues found upon amino acid analysis, and 4 residues found by pCMB titration. Ilo Threonine, 24 or 2.5 residues; serine, 19-21 residues. ‘I* 38 residues of glucosamine. rl* In addition to these results from a 20-hr hydrolysate the results of a 22-hr hydrolysate are also reported in Ref. (228). ‘I3 Following reported as residues per 100,000 MW: glucosamine (as N-acetyl derivative), 21; galactosamine (as N-acetyi derivative), 4; glucose, 3; fucose, 5; mannose, 6, galactose, 6 (238). ‘I* From sequence. Column chromatographic amino acid analyses may be found in Refs. (246-248). There is one sulfite group attached to a tyrosine residue.

!iL

!2

13 3 6 s: jr; 9 g

AMINO

ACID ANALYSES

REFERENCES

OF PROTEINS.

XII

513

FOR TABLE 2

1. Fliegerova, O., Salvetova, A., Ticha, M., and Kocourek, J. (1974) B&him. Biophys. Acta 351, 416-426. 2. Petersen, T. E., Roberts, H. R., Sottrup-Jensen, L., and Magnusson, S. (1976) Protides Biol. Fluids 23, 145- 149. 3. Strickland, W. N., Strickland, M., Brandt, W. F., Morgan, M., and Von Holt, C. (1974) FEES Lett. 40, 161-166. 4. Bailey, G. S., and Dixon, G. H. (1973) J. Biol. Chem. 248, 5463-5472. 5. Brandt, W. F., Strickland, W. N., and Von Holt, C. (1974) FEES Lett. 40, 349-352. 6. Brandt, W. F., Strickland, W. N., Morgan, M., and Von Holt, C. (1974) FEES Lett. 40, 167-172. 7. (a) Brandt, W. F., and Von Holt, C. (1974) Eur. J. Biochem. 46, 419; (b) (1971) FEES Lett. 14, 338-340; (c) (1972) FEES Lett. 23, 357-360. 8. Marzluff, Jr., W. F., Sanders, L. A., Miller, D. M.. and McCarthy, K. S. (1972) J. Biol.

Chem.

247, 2026-2033.

9. Patthy. L., Smith, E. L., and Johnson, J. (1973) J. Biol. Chem. 248, 6834-6840. 10. Hooper, J. A., Smith, E. L., Sommer, K. R., and Chalkley, R. (1973) J. Biol. Chem. 248,

3275-3279.

11. De Lange, R. J., Hooper, J. A., and Smith, E. L. (1973) J. Biol. Chem. 248, 3261-3274. 12. (a) De Lange, R. J., Fambrough, D. M., Smith, E. L., and Bonner, J. (1969) J. Bid. Chem. 244, 319-334; (b) Ogawa, Y., Quagliarotti, G., Jordan, J., Taylor, C. W., Starbuck, W. C., and Busch, H. (1969) J. Biol. Chem. 244, 4387-4392. 13. Sautiere, P.. Tyrou, D., Moschetto, Y., and Biserte, G. (1971) Biochimie 53, 479-483. 14. Sautiere, P., Lambelin-Breynaert, M. D., Moschetto, Y., and Biserte, G. (1971) Biochimie 53, 711-715. 15. Ishikawa, K., Hayashi, H., and Iwai, K. (1972) J. Biochem. (Tokyo) 72, 299-326. 16. Yokotsuka, K., Kikuchi, A., and Shimura, K. (1972) J. Biochem. (Tokyo) 71, 133-146. 17. Sautiere, P., Tyrou, D., Laine, B., Mizon, J., Ruffin, P., and Biserte, G. (1974) Eur. J. Biochem. 41, 563-576. 18. Wouters-Tyrou, D., Sautiere, P., and Biserte, G. (1974) Biochim. Biophys. Acta 342, 360-366.

19. Yeoman, L. C., Olson, M. 0. J., Sugano, N., Jordan, J., Taylor, C. W., Starbuck, W. C., and Busch, H. (1972) J. Biol. Chem. 247, 6018-6023. 20. Sautiere, P., Tyrou, D., Laine, B., Mizon, J., Lambelin-Breynaert, M. D., Ruffin, P., and Biserte, G. (1972) C’. R. Acad. Sci. Paris 274D, 1422-1425. 21. Champagne, M., Pouyet, J., Ouellet, L.. and Garel, A. (1970) Bull. Sot. Chim. Bioj. 52, 377-390. 22.

23. 24. 25. 26.

27. 28. 29. 30. 31. 32. 33. 34.

Sonnenbichler, J., and Nobis, P. C. (1970) Eur. J. Biochem. 16, 60-65. Graf, L., Bajusz, S., Patthy, A., Barat, E., and Cseh, C. (1971) Acta Biochim. Biophys. 6, 415-418. Riniker, B., Sieber, P., Rittel, W., and Zuber, H. (1972) Nature New Biol. 235, 114- 116. Johl, A., Riniker, B., and Schenkel-Hulliger, L. (1974) FEES Lett. 45, 172-174. Li. C. H. (1972) Biochem. Biophys. Res. Commun. 49, 835-839. Mutt, V., and Jorpes, J. E. (1971) Biochem. J. 125, 57p-58~. Morgan, F. J., Birken, S., and Canfield, R. E. (1975) J. Biol. Chem. 250, 5247-5258. Bahl, 0. P. (1969) J. Biol. Chem. 244, 567-574. Li, C. H., Dixon, J. S., and Chung, D. (1973) Arch. Biochem. Biophys. 155, 95- 110. Niall, N. D., Hogan, M. L., Tregear, G. W., Segre, G. V., Hwang, P., and Friesen, H. (1973) Rec. Progr. Harm. Res. 29, 387-416. Shome, B., and Friesen, H. G. (1971) Endocrinology 89, 631-641. Fernlund, P., and Josefsson, L. (1972) Science 177, 173-175. Femlund, P. (1971) Biochim. Biophys. Acta 237, 519-529.

514

DONALD

M. KIRSCHENBAUM

35. De La Llosa, P., Hermier, C., De La Llosa, P., and Jutisz, M. (1965) Bull. Sot. Chim. Biol. 47, 1073- 1078. 36. Papkoff, H., Gospodarowicz, D., and Li, C. H. (1967) Arch. Biochem. Biophys. 120,434-439.

37. Cahill, C. L., Shetlar, M. R., Payne, R. W., Endecott, B., and Li, Y. T. (1968) Biochim. Biophys.

Acta

154, 40-52.

38. Sherwood, 0. D., Grimek, H. J., and McShan, W. H. (1970) J. Biol. Chem. 245, 2328-2336. 39. Grimek, H. J., and McShan, W. H. (1974) J. Biol. Chem. 249, 5725-5732. 40. Papkoff, H., Mahlmann, L. J., and Li, C. H. (1967) Biochemistry 6, 3976-3982. 41. Saxena, B. B., and Rathnam, P. (1971) J. Biol. Chem. 246, 3549-3554. 42. Amir, S. M., and Parlow, A. F. (1972) Proc. Sot. Exp. Biol. Med. 139, 1120-1122. 43. Shome, B., and Parlow, A. F. (1974) J. Clin. Endocrinol. Metabol. 39, 199-202. 44. Rathnam, P., and Saxena, B. B. (1975) .I. Biol. Chem. 250, 6735-6746. 45. Shome, B., and Parlow, A. F. (1974) J. Clin. Endocrinol. Metabol. 39, 203-205. 46. Saxena, B. B., and Rathnam, P. (1976) J. Biol. Chem. 251, 993-1005. 47. Gregory, H., Hardy, P. M., Jones, D. S., Kenner, G. W., and Sheppard, R. C. (1964) Nature (London) 204,93 l-933. 48. Bentley, P. H., Kenner, G. W., and Sheppard, R. C. (1966) Nature (London) 209, 583-585. 49. Gregory, R. A., and Tracy, H. J. (1973) Mt. Sinai J. Med. 40, 359-364. 50. Agarwal, K. L., Beacham, J., Bentley, P. H., Gregory, R. A., Kenner, G. W., Sheppard, R. C., and Tracy, H. J. (1968) Nature (London) 219, 614-615. 51. Agarwal, K. L., Kenner, G. W., and Sheppard, R. C. (1969) Experientia 25,346-348. 52. Agarwal, K. L., Kenner, G. W., and Sheppard, R. C. (1969) J. Amer. Chem. Sot. 91, 3096-3097.

53. (a) Bromer, W. W., Staub, A., Diller, E. R., Bird, H. L., Sinn, L. G., and Behrens, 0. K. (1957) J. Amer. Chem. Sot. 79, 2794-2798; (b) Bromer, W. W., Sinn, L. G., and Behrens, 0. K. (1957) J. Amer. Chem. Sot. 79, 2807-2810. 54. Sundby, F., and Markussen, J. (1971) Horm. Metabol. Res. 3, 184-187. 55. Bromer, W. W., Boucher, M. E., and Koffenberger, J. E., Jr. (1971) J. Biol. Chem. 246, 2822-2827. 56. Sundby, F., and Markussen, J. (1972) Harm. Metabol. Res. 4, 56. 57. Thomsen, J., Kristiansen, K., and Brunfeldt, K. (1972) FEBS Lett. 21, 315-319. 58. Sundby, F., Markussen, J., and Danko, W. (1974) Horm. Metabol. Res. 6, 425. 59. Zakin, M. M., Paskus, E., Dellacha, J. M., Paladini, A. C., and Santome, J. A. (1973) FEBS Left. 34, 353-355. 60. Conde, R. D., Paladini, A. C., Santome, J. A., and Dellacha, J. M. (1973) Eur.

J. Biochem.

32, 563-568.

61. Li, C. H., and Dixon, J. S. (1971) Arch. Biochem. Biophys. 146, 233-236. 62. (a) Dixon, J. S., and Li, C. H. (1962) J. Gen. Physiol. Suppl. 45, 169-178; (b) Meisinger, M. A. P., Cirillo, V. J., Davis, G. E., and Reisfeld, R. A. (1964) Nature (London) 201, 820-821; (c) Bewley, T. A., Brovetto-Cruz, J., and Li, C. H. (1969)

Biochemistry

8, 4701-4708.

63. Niall, H. D., Hogan, M. L., Tregear, G. W., Segre, G. V., Hwang, P., and Friesen, H. (1973) Rec. Progr. Horm. Res. 29, 387-416. 64. Santome, J. A., Dellacha, J. M., Paladini, A. C., Wolfenstein, C. E. M., Pena, C., Poskus, E., Daurat, S. T., Biscoglio, M. J., De Sese, Z. M. M., and De Sanguesa, A. V. F. (1971) FEBS Lett. 16, 198-200. 65. Daurat, S. T., Femandez, H. N., Dellacha, J. M., Paladini, A. C., and Santome, J. A. (1970) 6th Nat. Meet. Sot. Arg. Inves. Bioquim., abstract P 39; cited in Ref. (64). 66. Wallis, M. (1973) FEBS Lett. 35, 11-14.

AMINO

ACID ANALYSES

OF PROTEINS.

XII

51.5

67. (a) Parcells, A. J. (1961) Nature (London) 192, 971-972; (b) Glaser, C. B., and Li, C. H. (1974) Biochemistry 13, 1044-1047. 68. Li, C. H., Gordon, D., and Knorr, J. (1973) Arch. Biochem. Biophys. 156, 493-508. 69. Fernandez, H. N., Pena, C., Poskus, E., Biscoglio, M. J., Paladini, A. C., Dellacha, J. M., and Santome, J. A. (1972) FEBS Lett. 25, 265-270. 70. Bellair, J. T. (1972) Biochem. Biophys. Res. Commun. 46, 1128-1134. 71. Dellacha, J. M., Enero, M. A., Santome, J. A., and Paladini, A. C. (1970) Eur. J. Biochem.

72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102.

12, 289-295.

Kleinholz, L. H. (1975) Nature (London) 258, 256-257. Kotaki, A. (1962) J. Biochem. (Tokyo) 51, 301-309. Kotahi, A. (1963) J. Biochem. (Tokyo) 53, 61-70. Hama, H., Titani, K., Sakaki, S., and Narita. K. (1964) J. Biochem. (Tokyo) 56, 285-293. Smith, L. F. (1966) Amer. J. Med. 40, 662-666. Bunzli, H. F., and Humbel, R. E. (1972) Hoppe-Seyler’s Z. Physiol. Chem. 353, 444-450. Steiner, D. F., Clark, J. L., Nolan, C., Rubenstein, A. H., Margoliash, E., Aten, B., and Oyer, P. E. (1969) Rec. Progr. Norm. Res. 25, 207-282. Markussen, J. (1971) Int. J. Protein Res. 3, 149-155. Ishihara, Y., Saito, T., Ito, Y., and Fujino, M. (1958) Nature(London) 181, 1468-1469. Harris, J. I., Sanger, F., and Naughton, M. A. (1956) Arch. Biochem. Biophys. 65, 427-438. Markussen, J., and Sundby, F. (1973) Int. J. Protein Res. 5, 37-48. Vensel, W. H., Pollock, H. G., and Kimmel, J. R. (1974) Fed. Proc. 33, Abstract No. 413. (a) Sanger, F., and Tuppy, H. (1951) Biochem. J. 49, 463-481, 481-490; (b) Sanger, F., and Thompson, E. 0. P. (1953) Biochem. J. 53, 353-366, 366-374. Nicol, D. S. H. W., and Smith, L. F. (1960) Nature (London) 187, 483-485. Smith, L. F. (1972) Diabetes 21, 457-460. Neumann, P., and Humbel, R. E. (1969) Int. J. Protein Res. 1, 125-140. Reid, K. B. M., Grant, P. T., and Youngson, A. (1968) Biochem. J. 110, 289-296. Neumann, P. A., Koldenhof, M., and Humbel, R. E. (1969) Hoppe-Seyler’s Z. Physiol. Chem. 350, 1286- 1288. Brown, H., Sanger, F., and Kitai, R. (1953) Biochem. J. 60, 556-565. Fernlund, P. (1976) Biochim. Biophys. Acta 439, 17-25. Graf, L., Barat, E., Cseh, C., and Sajgo, M. (1971) Biochim. Biophys. Acta 229, 276-278. Gilardeau, C., and Chretien, M. (1972) in Chemistry and Biology of Peptides (Meienhofer, J., ed.), pp. 609-611. Ann Arbor Science, Ann Arbor, Mich. Li, C. H., and Chung, D. (1976) Nature (London) 260, 622-624. Chretien, M., Gilardeau, C., Seidah, N., and Lis, M. (1976) Canad. J. Biochem. 54, 778-782. Graf, L., and Li, C. H. (1973) Biochem. Biophys. Res. Commun. 53, 1304-1309. Graf, L., Cseh, G., and Sajgo, M. (1971) in Polypeptide Hormones (Goth, E., and Forenyi, J., eds.), pp., 185-189. Akademiai Kiado, Budapest. Chretien, M., and Li, C. H. (1967) Canad. J. Biochem. 45, 1163-1174. Li, C. H., Barnafi, L., Chretien, M., and Chung, D. (1965) Nature (London) 208, 1093-1094. Chretien, M., Gilardeau, C., and Li, C. H. (1972) Int. J. Peptide Protein Res. 4, 263-265. Maghuin-Rogister, G., and Hennen, G. (1973) Eur. J. Biochem. 39, 235-253. Hennen, G., Maghuin-Rogister, G., and Mamoir, G. (1970) FEBS Lett. 9, 20-26.

516

DONALD

M. KIRSCHENBAUM

103. Pierce, J. G., Liao, T. H., Howard, S. M., Shome, B., and Cornell, J. S. (1971) Rec. Progr. Horm. Res. 27, 165-212. 104. Landefeld, T. D., and McShan, W. H. (1974) Biochemistry 13, 1389-1393. 105. Landefeld, T. D., Grimek, H. J., and McShan, W. H. (1972) Biochem. Biophys. Res. Commun. 46, 463-469. 106. Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537.

107. Hartree, A. S., Thomas. M., Braikevitch, M., Bell, E. T., Christie, D. W., Spaull, G. V., Taylor, R., and Pierce, J. G. (1971) J. Endocrinol. 51, 169-180. 108. (a) Shome, B., and Parlow, A. F. (1973) Fed. Proc. 32, 281, abstract No. 372; (b) Closset, J., Henner, G., and Lequim, R. M. (1973) FEBS Lerr. 29, 97-100. 109. Rathnam, P., and Saxena, B. B. (1970) J. Biol. Chem. 245, 3725-3731. 110. Rathnam, P., and Saxena, B. B. (1971) J. Biol. Chem. 246, 7087-7094. 111. Ward, D. N., Reichert, L. E., Liu, W-K., Nahm, H. S., Hsia, J., Lamkin, W. M., and Jones, N. S. (1973) Rec. Progr. Horm. Res. 29, 533-561. 112. Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Arch. Biochem. Biophys. 153, 554-572.

113. Lamkin, W. M., Fujino, M., Mayfield, J. D., Holcomb, G. H., and Ward, D. N. (1970) Biochim. Biophys. Acta 214, 290-298. 114. Sairam, M. R., and Li, C. H. (1974) Arch. Biochem. Biophys. 165, 709-714. 115. Sairam, M. R., Samy, T. S. A., Papkoff, H., and Li, C. H. (1972) Arch. Biochem. Biophys. 153, 572-586. 116. Gospodarowicz, D. (1972) J. Biol. Chem. 247, 6491-6498. 117. Papkoff, H., Gospodarowicz, D., Candiotti, A., and Li, C. H. (1965) Arch. Biochem. Biophys. 111, 431-438. 118. Ward, D. N., Walborg, E. F., and Adams-Mayne, M. (1961) Biochim. Biophys. Acta 50, 224-232.

119. Maghuin-Rogister,

G., Combamous,

Y., and Hennen, G. (1973) Eur. J. Biochem.

39, 255-263.

120. Ward, D. N., Reichert, L. E., Jr., Fitach, B. A., Nahm, H. S., Sweeney, C. M., and Neill, J. D. (1971) Biochemistry 10, 1796-1802. 121. Matsuo, H., Baba, Y., Nair, R. M. G., Arimura, A., and Schally, A. V. (1971) Biochem. Biophys. Res. Commun. 43, 1334-1339. 122. Schally, A. V., Nair, R. M. G., Redding, T. W., and Arimura, A. (1971) J. Biol. Chem. 246, 7230-7236. 123. Lo, T. B., Dixon, J. S., and Li, C. H. (1961) Biochim. Biophys. Acra 53, 584-586. 124. Harris, J. I., and Lerner, A. B. (1957) Nature (London) 179, 1346-1347. 125. Harris, J. I. (1959) Biochem. J. 71, 451-459. 126. Dixon, J. S., and Li, C. H. (1960) J. Amer. Chem. Sot. 82, 4568-4572. 127. Lee, T. H., Lerner, A. B., and Buettner-Janusch, V. (1963) Biochim. Biophys. Acta 71, 706-709. 128. Lowry, P. J., Bennett, H. P. J., McMartin, C., and Scott, A. P. (1974) Biochem. J. 141,439-444.

129. Lee, T. N., Lerner, A. B., and Buettner-Janusch, V., (1961) J. Biol. Chem. 236, 1390-1394. 130. Lowry, P. J., and Chadwick, A. (1970) Biochem. J. 118, 713-718. 131. Harris, J. I. (1959) Nature (London) 184, 167-169. 132. Geschwind, I. I., Li, C. H., and Barnafi, L. (1957) J. Amer. Chem. Sot. 79, 1003- 1004. 133. (a) Harris, J. I., and Roos, P. (1956) Nature (London) 178, 90; (b) Geschwind, I. I., Li, C. H., and Barna8, L. (1957) J. Amer. Chem. Sot. 79, 620-625.

AMINO

ACID

ANALYSES

OF PROTEINS.

517

XII

134. Dixon, J. S., and Li, C. H. (1961) Gen. Camp. Endocrinol. 1, 161-169. 135. Acher, R., Chauvet, J., and Chauvet, M. T. (1972) Eur. J. Biochem. 29, 12-19. 136. Chauvet, J., Chauvet, M. T., Beaupain, D., and Acher, R. (1965) C. R. Acad. Sci. Paris

261, 4234-4236.

137. Acher, R., Chauvet, J., and Chauvet, M. T. (1967) Nature (London) 216, 1037-1038. 138. Acher, R., Chauvet, J., Chauvet, M. T., and Crepy, D. (1962) B&him. Biophys. Acta

58, 624-625.

139. Acher, R., Chauvet, J., Chauvet, M. T., and Crepy, D. (1968) Gen. Camp. Endocrinol. 11, 535-538.

140. Acher, R., Chauvet, J., Chauvet. M. T., and Crepy, D. (1965) Comp. Physiol.

Biochem.

14, 245-254.

141. Acher, R., Chauvet, J., and Chauvet, M. T. (1970) FEB.9 Lerr. 11, 332-335. 142. Wilson, N., and Smith, M. (1969) Gen. Comp. Endocrinol. 13, 412-424. 143. Acher, R., Chauvet. J., and Chauvet, M. T. (1968) Biochim. Biophys. Acra 154, 255-257. 144. Acher, R., Chauvet, J., Chauvet, M. T., and Crepy, D. (1964) Biochim. Biophys. Acra 90, 613-615. 145. Acher, R., Chauvet, J., and Chauvet, M. T. (1970) Eur. J. Biochim. 17, 509-513. 146. Acher, R., Chauvet, J., and Chauvet, M. T. (1969) Nature (London) 221, 759-760. 147. Acher, R., Chauvet, J., Chauvet, M. T., and Crepy, D. (1967) Gen. Camp. Endocrinol.

8, 337-343.

148. Acher, R., Chauvet, J., and Chauvet, M. T. (1970) Nature (London) 227, 186-187. 149. Acher, R., Chauvet, J., and Chauvet, M. T. (1969) Gen. Camp. Endocrinol. 13, 357-360. 150. (a) Du Vigneaud, V., Ressler, C., and Trippett, S. (1953) J. Biol. Chem. 205, 949-957; (b) Tuppy, H., and Michl, H. (1953) Monarsh. Chemie 84, 1011-1020. 151. Pierce, J. G., Gordon, S., and Du Vigneaud, V. (1952) J. Biol. Chem. 199, 929-940. 152. Light, A., and Du Vigneaud, V. (1958) Proc. Sot. Exp. Biol. Med. 98, 692-696. 153. Acher, R., Chauvet, J., and Lenci, M. T. (1958) Bull. Sot. Chim. Biol. 40, 2005-2018. 154. Acher, R., Chauvet, J., and Chauvet. M. T. (1964) Nature (London) 201, 191-192. 155. Ferguson, D. R., and Pickering, B. T. (1969) Gen. Camp. Endocrinol. 13, 425-429. 156. Acher, R., Chauvet, J., and Lenci, M. T. (1959) C. R. Acad. Sci. 248, 1435-1438. 157. Pickering, B. T.. and Heller, H. (1969) J. Endocrinol. 45, 597-606. 158. Acher, R., Chauvet, J., Lenci, M. T., Morel, F., and Maetz, J. (1960)Biochim. Biophys. Acfa

42, 379-380.

159. Heller, H.. and Pickering, B. T. (1961) J. Physiol. 155, 98-114. 160. Acher, R., Chauvet, J., Chauvet, M. T., and Crepy, D. (1961) Biochim. Acra

Biophys.

51, 419-420.

161. (a) Du Vigneaud, V., Lawler, H. C., and Popenoe, E. A. (1953) J. Amer. Chem. Sot. 75, 4880-4881; (b) Acher, R., and Chauvet, J. (1953) Biochim. Biophys. Acra 12, 487-488. 162. Stewart, A. D. (1968) J. Endocrinol. 44, XIX-XX. 163. Popenoe, E. A., Lawler, H. C., and Du Vigneaud, V. (1952) J. Amer. Chem. Sot. 74, 3713. 164. Keutmann, H. T., Barling, P. M., Hendy, G. N., Segre, G. V., Niall, H. D., Aurbach, G. D., Potts, J. T.. and O’Riordan, J. L. H. (1974) Biochemistry 13, 1646-1652.

165. Niall, H. D.. Keutmann, H., Sauer, Potts, J., Jr. (1970) Hoppe-Seyler’s 166. Keutmann, H. T., Aurbach, G. D., Potts, J. T., Jr. (1971) Biochemistry

R., Hogan, M., Dawson, B., Aurbach, 2. Physiol.

Chem.

351,

G., and

1586-1588.

Dawson, B. F., Niall, H. D., Deftos, L. J., and 10, 2779-2787.

518

DONALD

M. KIRSCHENBAUM

167. Tashjian, A., Ontjes, D., and Munson, P. L. (1964) Biochemistry 3, 1175-1182. 168. Sauer, R. T., Niall, H. D., Hogan, M. L., Keutmann, H. T., O’Riordan, J. L. H., and Potts, J. T., Jr. (1974) Biochemistry 13, 1994-1999. 169. Woodhead, J. S., O’Riordan, J. L. H., Keutmann, H. T., Stoltz, M. L., Dawson, B. F., Niall, H. D., Robinson, C. J., and Potts, J. T., Jr. (1971) Biochemistry 10,2787-2792. 170. Hamilton, J. W., Niah, H. D., Keutmann, H. T., Potts, J. T., Jr., and Cohn, D. V. (1973) Fed. Proc. 32, 269, abstract No. 315. 171. Kimmel, J. R., Hayden, L. J., and Pollock, H. G. (1975) J. Biol. Chem. 250, 9369-9376.

172. Fernlund, P. (1974) Biochim. Biophys. Acta 371, 304-311. 173. Farmer, S. W., Clarke, W. C., Papkoff, H., Nishioka, R. S., Bern, H. A., and Li, C. H. (1975) Life Sci. 16, 149-158. 174. Wallis, M. (1974) FEBS Lett. 44, 205-208. 175. Graf, L. (1971) in Polypeptide Hormones (Goth, E., and Forenyi, J., eds.), pp. 255-262, Akademiai Kiado, Budapest. 176. Yudaev, N. A., Pankov, Y. A., Elizarova, G. P., Han, Z., and Nikolaeva, 0. P. (1975) Bioorg. Chem. 1, 97-112. 177. Li, C. H., Dixon, J. S., Lo, T. B., Schmidt, K. D., and Pankov, Y. A. (1970) Arch. 178.

Biochem. Biophys. 141, 705-737. Li, C. H. (1976) Znt. J. Peptide Protein Res. 8, 205-224. Eppstein, S. (1964) Nature (London) 202, 899-900. Clarke, W. C., and Li, C. H. (1974)Arch. Biochem. Biophys.

179. 180. 181. Hwang, P., Murray, Biochemistry

161, 313-318.

J. B., Jacobs, J. W., Niall, H. D., and Friesen, H. (1974)

13, 2354-2358.

182. Ellis, S., Grindeland,

R. E., Nuenke, J. M., and Callahan, P. X. (1969) Endocrinology

85, 886-894.

183. 184. 185. 186. 187. 188. 189. 190. 191. 192.

Mutt, V., Jorpes, J. E., and Magnusson, S. (1970) Eur. J. Biochem. 15, 513-519. Starr, R. C., and Jaenicke, L. (1974) Proc. Nat. Acad. Sci. USA 71, 1050-1054. Brewer, H. B., Jr., and Ronan, R. (1969) Proc. Nat. Acad. Sci. USA 63, 940-947. Nieto, A., Moya, F., and Candela, J. L. R. (1973) Biochim. Biophys. Acra 322, 383-391. Noda, T., and Narita, K. (1976) J. Biochem. (Tokyo) 79, 353-359. Otani, M., Yamauchi, H., Meguro, T., Kitazawa, S., Watanabe, S., and Orimo, H. (1976) J. Biochem. (Tokyo) 79, 345-352. Neher, R., Riniker, B., Rittel, W., and Zuber, H. (1968) Helv. Chim. Acta 51, 1900-1905. Potts, J. T., Jr., Niall, H. D., Keutmann, H. T., Brewer, H. B., and Deftos, L. J. (1968) Proc. Nat. Acad. Sci. USA 59, 1320-1328. Barg, W., Jr., Englert, M. E., Davies, M. C., Colucci, D. F., Snedeker, E. H., Dziobkowski, C., and Bell, P. H. (1970) Biochemistry 9, 1671-1676. Niall, H. D., Keutmann, H. T., Copp, D. H., and Potts, J. T., Jr. (1969) Proc. Nat. Acad.

Sci.

USA

64, 771-778.

193. Raulais, D., Hagaman, J., Ontjes, D. A., Lundblad, R. L., and Kingdon, H. S. (1976) Eur. J. Biochem. 64, 607-611. 194. Sauer, R., Niall, H. D., and Potts, J. T., Jr. (1970) Fed. Proc. 29,728 abstract No. 2723. 195. Schlesinger, D. H., and Goldstein, G. (1975) Cell 5, 361-365. 196. Pierce, J. G., and Wynston, L. L. (1960) Biochim. Biophys. Acta 43, 538-540. 197. Sairam, M. R., and Li, C. H. (1973) Biochem. Biophys. Res. Commun. 51, 336-342. 198. Sairam, M. R., and Li, C. H. (1973) Biochem. Biophys. Res. Commun. 54, 426-431. 199. Roos, P., Jacobson, G., and Wide, L. (1975) Biochim. Biophys. Acra 379, 247-261. 200. Liao, T. H., and Pierce, J. G. (1971) J. Biol. Chem. 246, 850-865. 201. Pierce, J. G. (1971) Endocrinology 89, 1331-1344.

AMINO

ACID ANALYSES

OF PROTEINS.

519

XII

202. Hennen, G., Maghuin-Rogister, G., and Mamoir, G. (1970) FEBS Lett. 9, 20-26. 203. Carsten, M. E., and Pierce, J. G. (1960) J. Biol. Chem. 235, 78-84. 204. Burgus, R., Butcher, M., Amoss, M., Ling, N., Monahan, M., Rivier, J., Fellows, R., Blackwell, R., Vale, W., and Guillemin, R. C. (1972) Proc. Nat. Acad. Sci. USA 69, 278-282. 205.

Baba, Y., Matsuo, H., and Schally, A. V. (1971) Biochem.

Biophys.

Res.

Commun.

44, 459-468.

Celis, M. E., Taleisnik, S., and Walter, R. (1971) Proc. Nat. Acad. Sci. USA 68, 1428- 1433. 207. Nair, R. M. G., Kastin, A. J., and Schally, A. V. (1971) Biochem. Biophys. Res. Commun. 43, 1376- 1381. 208. Grant, N. H., Clark, D. E., and Rosanoff (1973) Biochem. Biophys. Res. Commun. 51, lOO- 106. 209. Brazeau, P., Vale, W., Burugs, R., Ling, N., Butcher, M.. Rivier, J., and Guillemin

206.

(1973)

Science

179, 77-79.

210. Burgus, R., Dunn, T. F., Desiderio, D., and Guillemin, Paris

269D,

R. (1969) C. R. Acad.

Sci.

1870-1873.

211. Nair, R. M. G., Barrett, J. F., Bowers, C. Y., and Schally, A. V. (1970) Biochemistry 9, 1103-1106. 212. Chen, J. S., and Mortenson, E. (1974) B&him. Biophys. Acta 371, 283-298. 213. Gitlitz, P. H., and Krasna, A. I. (1970) Biochemistry 14, 2564-2568. 214. Duley, J. A., and Holmes, R. S. (1976) Eur. J. Biochem. 63, 163-173. 215. Bock, H. G., and Fleischer, S. (1975)J. Biol. Chem. 250, 5774-5781. 216. Wada, G. H., Fellman, J. H., Fujita, T. S., and Roth, E. S. (1975) J. Biol. Chem. 250, 6720-6726.

217. 218. 219. 220. 221.

Uwajima, T., Yagi, H., and Terada, 0. (1974) Agr. Biol. Chem. 38, 1149-I 153. Martin, R. G., Voll, M. J., and Appella, E. (1967)J. Biol. Chem. 242, 1175-1181. Merrick. W. C.. and Anderson, W. F. (1975)J. Biol. Chem. 250, 1197-1206. Heyde, E., and Morrison, J. F. (1976) Biochim. Biophys. Acra 429, 635-644. Yokosawa, H., Tobita, T., and Yamada, T. (1971) Biochim. Biophys. Acta 227,

222.

Krishnaiah, K. V. (1975) Arch. Biochem. Biophys. 170, 567-575. Creighton, T. E., and Yanofsky, C. (1966) J. Biol. Chem. 241, 4616-4624. Neumann, N. P., and Lampen, J. 0. (1967) Biochemisfry 6,468-475. Gascon, S., Neumann, N. P., and Lampen, J. 0. (1968)J. Biol. Chem. 243, 1573- 1577. Illingworth, J. A. (1972) Biochem. J. 129, 1119-1124. Buzdygon, B. E.. Braginski, J. E., and Chung, A. E. (1973) Arch. Biochem. Biophys.

538-553.

223. 224. 225. 226.

227.

159, 400-408.

228. Howard, R. L., and Becker, R. R. (197O)J. Biol. Chem. 245, 3186-3194. 229. Reeves, H. C., Daumy, G. O., Lin, C. C., and Houston. M. (1972) Biochim. Biophys.

Acta

258, 27-39.

230. Fan, C. C., and Plaut, G. W. E. (1974) J. Biol. Chem. 249, 4839-4845. 231. Barrera, C. R., and Jurtshuk. P. (1970) Biochim. Biophys. Acta 220, 416-429. 232. Chung, A. E.. and Franzen, J. S. (1969) Biochemisfry 8, 3175-3184. 233. Shen, W. C., Mauck, L., and Colman, R. F. (1974) J. Biol. Chem. 249, 7942-7949. 234. Shiio, I., Shiio, T., and McFadden, B. A. (1965) Biochim. Biophys. Acta 96, 114- 122. 235. Durekovic, A., Flossdorf, J., and Kula, M. R. (1973) Eur. J. Biochem. 36, 528-533. 236. Baldwin, A., and Berg, P. (1966) J. Biol. Chem. 241, 831-838. 237. Piszkiewicz. D., and Goitein. R. K. (1974) Biochemistry 13, 2505-2511. 238. Cogoli, A., Eberle, A., Sigrist, H., Joss, C., Robinson, E., Mosimann, H., and Semenza, G. (1973) Eur. J. Biochem. 33, 40-48. 239. Margolies, M. N., and Goldberger, R. F. (1967) J. Biol. Chem. 242, 256-264.

520

DONALD

M. KIRSCHENBAUM

240. Hofler, J. G., Decedue, C. J., Luginbuhl, G. H., Reynolds, J. A., and Burns, R. 0. (1975) J. Bid. Chem. 250, 877-882. 241. Sandermann, H., Jr., and Strominger, J. L. (1971) Proc. Nat. Acad. Sci. USA 68, 2441-2443. 242. Parsons, S. J., and Burns, R. 0. (1969) J. Eiol. Chem. 244, 996- 1003. 243. Bartholemew, J. C., and Calve, J. M. (1971) Biochim. Biophys. Acta 250, 568-576. 244. Webster, R. E., and Nelson, C. A., and Gross, S. R. (1965) Biochemistry 4,2319-2327. 245. Bartholomew, J. C., and Calvo, J. M. (1971) Biochim. Biophys. Acta 250, 577-587. 246. Bagdy, D., Barabas, E., and Graf, L. (1973) Thromb. Res. 2, 229-238. 247. Markwardt, F., and Walsmann, P. (1967) Hoppe-Seyler’s Z. Physiol. Chem. 348, 1381-1386. 248. De La Llosa, P., Tertrin, C., and Jutisz, M. (1963) Bull. Sot. Chim. Biol. 45, 69-74.

A compilation of amino acid analyses of proteins, polypeptides, and peptides. XII. Residues per molecule--9.

ANALYTICAL 83, 484-520 (1977) BIOCHEMISTRY A Compilation of Amino Acid Analyses of Proteins, Polypeptides, and Peptides XII. Residues DONALD Depa...
2MB Sizes 0 Downloads 0 Views