research papers Acta Crystallographica Section C

Structural Chemistry ISSN 2053-2296

A new three-dimensional coordination polymer of SrII based on dipicolinic acid, with different coordination environments for SrII

demonstrate that aromatic dicarboxylic acids acting as organic linkers have been utilized extensively in the preparation of coordination polymers (Roesky & Andruh, 2003; Barnett & Champness, 2003; Dalai et al., 2002). Against this background, we present here the crystal structure of the title complex, (I), of Sr with dipicolinic acid (pydcH2), i.e. {[Sr3(pydc)2(pydcH)2(H2O)2]2H2O}n.

Janet Soleimannejad,a* Zohreh Derikvandb and Farzaneh Koleiaec a

School of Chemistry, College of Science, University of Tehran, Tehran, Iran, Department of Chemistry, Faculty of Sciences, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran, and cDepartment of Chemistry, Faculty of Science, Ilam University, Ilam, Iran Correspondence e-mail: [email protected] b

Received 30 December 2013 Accepted 29 April 2014

2. Experimental

A three-dimensional coordination polymer of SrII based on dipicolinic acid (pydcH2) has been synthesized and characterized, namely poly[[diaquabis(3-6-carboxypyridine-2-carboxylato)bis(4-pyridine-2,6-dicarboxylato)tristrontium(II)] dihydrate], {[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]2H2O}n. The asymmetric unit consists of two unique SrII centres (one of them situated on an inversion centre), two independent pydc2 ligands, and one coordinated and one uncoordinated water molecule. The two independent SrII cations are surrounded by water and dipicolinate molecules in distorted square-antiprism and distorted tricapped trigonal prismatic geometries. The dipicolinate ligands adopt 3- and 4bridging modes, linking the alkaline earth metal centres into a three-dimensional coordination framework. One dipicolinate ligand is doubly deprotonated, while the other is singly deprotonated. Keywords: crystal structure; three-dimensional coordination polymer; dipicolinic acid; strontium(II) complex.

1. Introduction There is continuing interest in the design and construction of coordination polymers, not only for their potential applications in gas adsorption, magnetism, luminescence and catalysis technologies and their photophysical and porous properties, but also for their charming architectures and topologies (Wang et al., 2012; Bu et al., 2004; Carlucci et al., 2003). The construction of coordination polymers (CPs) is mainly dependent on the metal centres and organic ligands used (Liang et al., 2009; Martin et al., 2008; Kumar et al., 2007). The coordination features of the organic ligand, including the coordination mode and orientation of the donor groups, play an important role in controlling CP structures. Many reports Acta Cryst. (2014). C70, 613–616

2.1. Synthesis and crystallization

A mixture of pyridine-2,6-dicarboxylic acid (30 mg, 0.19 mmol), 2,9-dimethylphenanthroline (80 mg, 0.38 mmol) and Sr(NO3)2 (40 mg, 0.19 mmol) in water (10 ml) was stirred and heated to 353 K for 1 h. Colourless crystals of the title compound, (I), were obtained by slow evaporation of the solution at room temperature over a period of two months. Analysis calculated for C14H10N2O10Sr1.50: C 33.75, H 2.01, N 5.63%; found: C 33.63, H 2.06, N 5.64%. IR (KBr disc, , cm1): 3598 (s), 3477 (s), 1610 (s), 1581 (s), 1566 (s), 1402 (s), 1381 (s), 908 (s), 823 (s), 766 (s), 655 (s). 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The water and carboxylic acid H atoms were initially observed in a Fourier difference ˚. map and included with O—H bond lengths set at 0.85 A C-bound H atoms were included in geometrically calculated ˚ . All positions and treated as riding atoms, with C—H = 0.93 A H atoms were refined, with Uiso(H) = 1.2Ueq(C,O).

3. Results and discussion As depicted in Fig. 1, the asymmetric unit of (I) consists of two unique SrII centres (one situated on an inversion centre), one doubly deprotonated pyridine-2,6-dicarboxylate (pydc2) ligand, one singly deprotonated 6-carboxypyridine-2-carboxylate (pydcH) ligand, and one coordinated and one uncoordinated water molecule. In the synthesis of (I), we used dipicolinic acid (pydcH2) and 2,9-dimethylphenanthroline (dmp) so as to form a coordination polymer containing the dmp fragment as an auxiliary ligand. However, the results show that only pydc2/pydcH

doi:10.1107/S2053229614009668

# 2014 International Union of Crystallography

613

research papers Table 1

Table 2

Experimental details.

˚ ). Selected bond lengths (A

Crystal data Chemical formula

[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]2H2O 997.36 Monoclinic, P21/c 296 10.3733 (5), 9.1936 (4), 18.4182 (8) 104.469 (1) 1700.79 (13) 2 Mo K 4.78 0.43  0.38  0.36

Mr Crystal system, space group Temperature (K) ˚) a, b, c (A  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer

Bruker SMART CCD area-detector diffractometer Multi-scan (SADABS; Sheldrick, 2005) 0.233, 0.278 21356, 3839, 3572

Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A

0.032 0.650

Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters H-atom treatment ˚ 3)  max,  min (e A

0.023, 0.057, 1.06 3839 251 H-atom parameters constrained 0.87, 0.40

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SHELXTL (Sheldrick, 2008).

Sr1—O6i Sr1—O9 Sr1—O4ii Sr1—O5 Sr1—O7 Sr1—N2 Sr1—O7iii

2.5197 (14) 2.5754 (14) 2.5958 (13) 2.6301 (14) 2.6304 (13) 2.6926 (15) 2.7183 (14)

Sr1—O1 Sr1—O3ii Sr1—C7ii Sr2—O8iv Sr2—O4 Sr2—N1 Sr2—O1

2.7425 (13) 2.8248 (14) 3.0337 (19) 2.4710 (13) 2.5289 (13) 2.7434 (16) 2.7939 (13)

Symmetry codes: (i) x þ 1; y  12; z þ 12; (ii) x; y; z; (iii) x þ 1; y; z; (iv) x  1; y; z.

˚ and the angle between the mean plane of the ring is 0.0087 A  planes of the rings is 0.0 ). Interestingly, there are two types of dipicolinate ligand in (I) which bridge several alkaline earth metal ions. One of the dipicolinate ligands bridges four SrII cations and the other bridges three SrII cations, creating a three-dimensional network of Sr1 and Sr2 units. The Sr1—N2 bond length is shorter than Sr2—N1 (Table 2). The Sr1—O and Sr2—O bond lengths range from 2.4710 (13) ˚. to 2.8248 (14) A Two types of four-membered Sr2O2 rings exist, with Sr  Sr ˚ for two symmetry-related Sr1 atoms distances of 4.2813 (3) A ˚ bridged by two symmetry-related O7 atoms, and 4.3880 (3) A for Sr1 and Sr2 bridged by atoms O1 and O4B atoms (see Fig. 3 for symmetry code B). The binuclear units comprised of Sr1

contributes to the network of (I), forming a three-dimensional coordination polymer, as shown in Fig. 2. There are two independent SrII cations in the structure of (I). Atom Sr1 is coordinated by one N atom and seven O atoms from five dipicolinate ligands, and by one O atom of a water molecule (Fig. 3). Thus, the coordination geometry around atom Sr1 is a distorted tricapped trigonal prism. Atom Sr2 is octacoordinated by two N atoms (N1 and N1ii; see Fig. 3 for symmetry codes) and six O atoms (O1, O1ii, O4, O4ii, O8iv and O8iii) from the carboxylate groups of four pydcH ligands. However, the coordination geometry around atom Sr2 is a distorted square antiprism (Fig. 3). The two pydcH ligands that bond to Sr2 are coplanar (the mean deviation from the

Figure 1

Figure 2

The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Representations of the three-dimensional structure of (I), (a) along the a axis and (b) along the b axis.

614

Soleimannejad et al.



[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]2H2O

Acta Cryst. (2014). C70, 613–616

research papers

Figure 3 The different coordination polyhedra around atoms Sr1 and Sr2 in (I). [Symmetry codes: (i) x + 1, y  12, z + 12; (ii) x, y, z; (iii) x + 1, y, z; (iv) x  1, y, z.]

atoms are connected by Sr2 atoms to form the final framework. This network is different from that of a previously reported SrII complex (Soleimannejad et al., 2007), which was composed of an anionic [Sr2(pydc)2(H2O)3]2 complex, a protonated 4,40 -bipyridine as counter-ion and three uncoordinated water molecules.

Inter- and intramolecular O—H  O hydrogen-bond interactions between O atoms of the carboxylate groups and water molecules support the three-dimensional structure of (I) (Table 3). An intramolecular O—H  O hydrogen-bonding interaction between atoms H9B and O3v of a carboxylate group of the pydcH ligand results in the formation of an S(6) ring [see Bernstein et al. (1995) for details of graph-set

Figure 4 The four-membered Sr2O2 units of (I), each formed by two Sr atoms. The units formed by Sr1 atoms are shown in yellow, and those formed by one Sr1 and one Sr2 atom are shown in violet. Acta Cryst. (2014). C70, 613–616

Soleimannejad et al.



[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]2H2O

615

research papers analysis]. The other H atom of the coordinated water molecule (H9A) forms an O—H  O hydrogen bond to atom O2 of the free water molecule. The two H atoms of this water molecule also contribute to the hydrogen bonding. One of the H atoms (H2B) forms a typical O—H  O hydrogen bond with atom O3 of one of the pydcH ligands. The second H atom (H2A) forms bifurcated O—H  O hydrogen bonds to atoms O6 and O5 of two different pydc2 ligands (Table 3). Lastly, carboxylic acid atom O2 forms a strong hydrogen bond to carboxylate atom O5 of a neighbouring independent pydc2 ligand. Supporting information for this paper is available from the IUCr electronic archives (Reference: OV3048).

References Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bu, X.-H., Tong, M.-L., Chang, H.-H., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192–195. Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247– 289.

616

Soleimannejad et al.



[Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]2H2O

Table 3 ˚ ,  ). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

O2—H2  O5 O9—H9B  O3v O9—H9A  O2S O2S—H2B  O3vi O2S—H2A  O5vii O2S—H2A  O6

0.85 0.85 0.85 0.85 0.85 0.85

1.64 1.94 1.98 1.97 2.48 2.40

2.4666 (19) 2.7615 (19) 2.824 (2) 2.808 (2) 3.235 (2) 3.033 (2)

164 163 170 168 148 132

Symmetry codes: (v) x þ 1; y; z; (vi) x; y þ 1; z; (vii) x þ 1; y þ 12; z þ 12.

Dalai, S., Mukherjee, P. S., Rogez, G., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. pp. 3292–3297. Kumar, D. K., Das, A. & Dastidar, P. (2007). Cryst. Growth Des. 7, 2096–2105. Liang, X.-Q., Zhou, X.-H., Chen, C., Xiao, H.-P., Li, Y.-Z., Zuo, J.-L. & You, X.-Z. (2009). Cryst. Growth Des. 9, 1041–1053. Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2008). Cryst. Growth Des. 8, 3518–3520. Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119. Sheldrick, G. M. (2005). SADABS. University of Go¨ttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Soleimannejad, J., Aghabozorg, H., Hooshmand, S. & Adams, H. (2007). Acta Cryst. E63, m3089–m3090. Wang, X.-L., Mu, B., Lin, H.-Y., Liu, G.-C., Tian, A.-X. & Yang, S. (2012). CrystEngComm, 14, 1001–1009.

Acta Cryst. (2014). C70, 613–616

supplementary materials

supplementary materials Acta Cryst. (2014). C70, 613-616

[doi:10.1107/S2053229614009668]

A new three-dimensional coordination polymer of SrII based on dipicolinic acid, with different coordination environments for SrII Janet Soleimannejad, Zohreh Derikvand and Farzaneh Koleiae Computing details Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008). Poly[[diaquabis(µ3-2-carboxypyridine-2-carboxylato)bis(µ4-pyridine-2,6-dicarboxylato)tristrontium(II)] dihydrate] Crystal data [Sr3(C7H3NO4)2(C7H4NO4)2(H2O)2]·2H2O Mr = 997.36 Monoclinic, P21/c Hall symbol: -P2ybc a = 10.3733 (5) Å b = 9.1936 (4) Å c = 18.4182 (8) Å β = 104.469 (1)° V = 1700.79 (13) Å3 Z=2

F(000) = 984 Dx = 1.947 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9958 reflections θ = 2.5–27.5° µ = 4.78 mm−1 T = 296 K Block, colourless 0.43 × 0.38 × 0.36 mm

Data collection Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2005) Tmin = 0.233, Tmax = 0.278

21356 measured reflections 3839 independent reflections 3572 reflections with I > 2σ(I) Rint = 0.032 θmax = 27.5°, θmin = 2.3° h = −13→13 k = −11→11 l = −22→22

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.023 wR(F2) = 0.057 S = 1.06 3839 reflections 251 parameters 0 restraints Acta Cryst. (2014). C70, 613-616

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0302P)2 + 1.4191P] where P = (Fo2 + 2Fc2)/3

sup-1

supplementary materials (Δ/σ)max < 0.001 Δρmax = 0.87 e Å−3 Δρmin = −0.40 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0174 (5)

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Sr1 Sr2 N1 N2 C1 C2 C3 H3 C4 H4 C5 H5 C6 C7 C8 C9 C10 H10 C11 H11 C12 H12 C13 C77 O1 O2 H2 O3 O4 O5 O6 O7 O8

x

y

z

Uiso*/Ueq

0.429169 (15) 0.0000 −0.05890 (15) 0.66963 (15) 0.16033 (18) 0.02716 (18) −0.0028 (2) 0.0609 −0.1297 (2) −0.1526 −0.2218 (2) −0.3085 −0.18184 (18) −0.27438 (18) 0.75994 (18) 0.78041 (18) 0.90676 (18) 0.9823 0.91831 (19) 1.0014 0.80362 (19) 0.8082 0.68158 (18) 0.55270 (18) 0.18794 (13) 0.23705 (14) 0.3159 −0.39752 (12) −0.22098 (12) 0.44715 (12) 0.55610 (13) 0.64358 (13) 0.86292 (13)

0.052192 (18) 0.0000 0.27558 (17) 0.14008 (18) 0.2930 (2) 0.3615 (2) 0.5018 (2) 0.5589 0.5555 (2) 0.6496 0.4658 (2) 0.4974 0.3282 (2) 0.2230 (2) −0.0145 (2) 0.0903 (2) 0.1398 (2) 0.1004 0.2481 (2) 0.2847 0.3013 (2) 0.3746 0.2424 (2) 0.2977 (2) 0.17345 (15) 0.36889 (17) 0.3364 0.24446 (16) 0.11491 (15) 0.23118 (15) 0.40241 (16) −0.02905 (15) −0.07439 (15)

0.096509 (9) 0.0000 0.03896 (9) 0.17779 (9) 0.11886 (11) 0.08591 (11) 0.10372 (12) 0.1358 0.07275 (13) 0.0832 0.02592 (12) 0.0056 0.00999 (11) −0.04103 (10) 0.09605 (11) 0.16165 (10) 0.19866 (11) 0.1877 0.25183 (11) 0.2762 0.26836 (11) 0.3037 0.23068 (10) 0.24504 (10) 0.09723 (8) 0.17132 (9) 0.1862 −0.05602 (8) −0.06335 (8) 0.21000 (8) 0.28713 (8) 0.05541 (8) 0.08574 (8)

0.00757 (7) 0.00860 (8) 0.0103 (3) 0.0095 (3) 0.0133 (4) 0.0116 (4) 0.0160 (4) 0.019* 0.0178 (4) 0.021* 0.0153 (4) 0.018* 0.0105 (4) 0.0099 (4) 0.0100 (4) 0.0099 (3) 0.0132 (4) 0.016* 0.0150 (4) 0.018* 0.0136 (4) 0.016* 0.0101 (4) 0.0097 (4) 0.0150 (3) 0.0236 (4) 0.028* 0.0136 (3) 0.0113 (3) 0.0134 (3) 0.0156 (3) 0.0117 (3) 0.0131 (3)

Acta Cryst. (2014). C70, 613-616

sup-2

supplementary materials O9 H9B H9A O2S H2B H2A

0.46618 (14) 0.5163 0.5063 0.57078 (18) 0.5242 0.5784

0.30997 (16) 0.3069 0.3758 0.55022 (17) 0.6216 0.5635

0.05084 (8) 0.0207 0.0804 0.14218 (9) 0.1210 0.1887

0.0157 (3) 0.019* 0.019* 0.0277 (4) 0.033* 0.033*

Atomic displacement parameters (Å2)

Sr1 Sr2 N1 N2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C77 O1 O2 O3 O4 O5 O6 O7 O8 O9 O2S

U11

U22

U33

U12

U13

U23

0.01112 (9) 0.01046 (11) 0.0138 (7) 0.0146 (7) 0.0152 (8) 0.0141 (8) 0.0180 (9) 0.0219 (10) 0.0164 (9) 0.0143 (8) 0.0159 (8) 0.0163 (8) 0.0155 (8) 0.0134 (8) 0.0151 (8) 0.0207 (9) 0.0163 (8) 0.0157 (8) 0.0148 (6) 0.0165 (7) 0.0133 (6) 0.0144 (6) 0.0141 (6) 0.0213 (7) 0.0149 (6) 0.0162 (6) 0.0235 (7) 0.0483 (10)

0.00716 (11) 0.00764 (14) 0.0086 (8) 0.0083 (8) 0.0126 (10) 0.0111 (10) 0.0127 (10) 0.0089 (10) 0.0117 (10) 0.0089 (9) 0.0074 (9) 0.0080 (9) 0.0091 (9) 0.0161 (10) 0.0195 (11) 0.0119 (10) 0.0093 (9) 0.0101 (9) 0.0125 (7) 0.0208 (9) 0.0137 (7) 0.0083 (7) 0.0142 (7) 0.0146 (7) 0.0126 (7) 0.0124 (7) 0.0134 (7) 0.0182 (9)

0.00555 (11) 0.00920 (13) 0.0104 (8) 0.0062 (8) 0.0136 (10) 0.0110 (10) 0.0176 (11) 0.0233 (12) 0.0180 (11) 0.0096 (9) 0.0076 (9) 0.0083 (9) 0.0063 (9) 0.0110 (10) 0.0099 (10) 0.0087 (10) 0.0056 (9) 0.0034 (9) 0.0175 (8) 0.0286 (9) 0.0141 (7) 0.0117 (7) 0.0125 (7) 0.0113 (7) 0.0090 (7) 0.0138 (7) 0.0124 (7) 0.0167 (9)

−0.00024 (6) 0.00101 (8) −0.0004 (6) 0.0003 (6) −0.0008 (7) −0.0004 (7) −0.0015 (7) 0.0032 (7) 0.0026 (7) −0.0010 (7) −0.0005 (7) 0.0007 (7) 0.0000 (7) 0.0012 (7) −0.0038 (7) −0.0023 (7) 0.0004 (7) 0.0016 (7) 0.0020 (5) 0.0050 (6) 0.0012 (5) 0.0009 (5) 0.0008 (5) 0.0026 (6) −0.0002 (5) 0.0025 (5) 0.0011 (6) 0.0110 (7)

0.00421 (6) 0.00523 (9) 0.0064 (6) 0.0037 (6) 0.0063 (7) 0.0055 (7) 0.0048 (8) 0.0066 (8) 0.0047 (8) 0.0054 (7) 0.0054 (7) 0.0076 (7) 0.0053 (7) 0.0051 (7) 0.0022 (7) 0.0045 (7) 0.0046 (7) 0.0028 (7) 0.0038 (5) −0.0035 (6) 0.0041 (5) 0.0039 (5) 0.0045 (5) 0.0051 (5) 0.0055 (5) 0.0093 (5) 0.0089 (6) 0.0084 (7)

−0.00065 (6) −0.00166 (9) −0.0017 (6) 0.0008 (6) −0.0037 (7) −0.0013 (7) −0.0045 (8) −0.0038 (8) 0.0000 (8) 0.0007 (7) 0.0025 (7) 0.0032 (7) 0.0020 (7) 0.0024 (7) −0.0002 (8) −0.0019 (7) 0.0017 (7) 0.0022 (7) −0.0068 (6) −0.0156 (7) −0.0010 (5) −0.0023 (5) −0.0044 (5) −0.0060 (6) −0.0021 (5) 0.0006 (5) 0.0009 (6) 0.0025 (6)

Geometric parameters (Å, º) Sr1—O6i Sr1—O9 Sr1—O4ii Sr1—O5 Sr1—O7 Sr1—N2 Sr1—O7iii Sr1—O1 Sr1—O3ii

Acta Cryst. (2014). C70, 613-616

2.5197 (14) 2.5754 (14) 2.5958 (13) 2.6301 (14) 2.6304 (13) 2.6926 (15) 2.7183 (14) 2.7425 (13) 2.8248 (14)

C4—C5 C4—H4 C5—C6 C5—H5 C6—C7 C7—O3 C7—O4 C7—Sr1ii C8—O8

1.387 (3) 0.9300 1.385 (3) 0.9300 1.513 (3) 1.253 (2) 1.256 (2) 3.0337 (19) 1.257 (2)

sup-3

supplementary materials Sr1—C7ii Sr1—Sr1iii Sr1—Sr2 Sr2—O8iii Sr2—O8iv Sr2—O4ii Sr2—O4 Sr2—N1 Sr2—N1ii Sr2—O1 Sr2—O1ii Sr2—C8iv Sr2—C8iii Sr2—Sr1ii N1—C2 N1—C6 N2—C9 N2—C13 C1—O1 C1—O2 C1—C2 C2—C3 C3—C4 C3—H3

3.0337 (19) 4.2813 (4) 4.3880 (3) 2.4710 (13) 2.4710 (13) 2.5289 (13) 2.5289 (13) 2.7434 (16) 2.7434 (16) 2.7939 (13) 2.7939 (13) 3.3985 (18) 3.3985 (18) 4.3880 (2) 1.336 (2) 1.343 (2) 1.338 (2) 1.338 (2) 1.227 (2) 1.292 (2) 1.502 (3) 1.385 (3) 1.389 (3) 0.9300

C8—O7 C8—C9 C8—Sr2v C9—C10 C10—C11 C10—H10 C11—C12 C11—H11 C12—C13 C12—H12 C13—C77 C77—O6 C77—O5 O2—H2 O3—Sr1ii O4—Sr1ii O6—Sr1vi O7—Sr1iii O8—Sr2v O9—H9B O9—H9A O2S—H2B O2S—H2A

1.258 (2) 1.518 (3) 3.3985 (18) 1.394 (3) 1.381 (3) 0.9300 1.389 (3) 0.9300 1.392 (3) 0.9300 1.514 (2) 1.231 (2) 1.279 (2) 0.8500 2.8248 (14) 2.5958 (13) 2.5197 (14) 2.7183 (14) 2.4710 (13) 0.8500 0.8500 0.8500 0.8500

O6i—Sr1—O9 O6i—Sr1—O4ii O9—Sr1—O4ii O6i—Sr1—O5 O9—Sr1—O5 O4ii—Sr1—O5 O6i—Sr1—O7 O9—Sr1—O7 O4ii—Sr1—O7 O5—Sr1—O7 O6i—Sr1—N2 O9—Sr1—N2 O4ii—Sr1—N2 O5—Sr1—N2 O7—Sr1—N2 O6i—Sr1—O7iii O9—Sr1—O7iii O4ii—Sr1—O7iii O5—Sr1—O7iii O7—Sr1—O7iii N2—Sr1—O7iii O6i—Sr1—O1 O9—Sr1—O1 O4ii—Sr1—O1

142.98 (5) 75.33 (4) 130.61 (4) 71.86 (5) 72.37 (4) 116.54 (4) 102.34 (4) 87.80 (4) 118.55 (4) 120.61 (4) 80.80 (5) 73.29 (5) 155.38 (5) 59.90 (4) 60.84 (4) 140.81 (4) 76.20 (4) 73.19 (4) 144.43 (4) 73.67 (5) 125.18 (4) 94.56 (4) 80.69 (4) 62.30 (4)

O8iii—Sr2—C8iii O8iv—Sr2—C8iii O4ii—Sr2—C8iii O4—Sr2—C8iii N1—Sr2—C8iii N1ii—Sr2—C8iii O1—Sr2—C8iii O1ii—Sr2—C8iii C8iv—Sr2—C8iii O8iii—Sr2—Sr1 O8iv—Sr2—Sr1 O4ii—Sr2—Sr1 O4—Sr2—Sr1 N1—Sr2—Sr1 N1ii—Sr2—Sr1 O1—Sr2—Sr1 O1ii—Sr2—Sr1 C8iv—Sr2—Sr1 C8iii—Sr2—Sr1 O8iii—Sr2—Sr1ii O8iv—Sr2—Sr1ii O4ii—Sr2—Sr1ii O4—Sr2—Sr1ii N1—Sr2—Sr1ii

16.85 (5) 163.15 (5) 63.83 (4) 116.17 (4) 109.87 (4) 70.13 (4) 80.01 (4) 99.99 (4) 180.00 (5) 62.68 (3) 117.32 (3) 31.56 (3) 148.44 (3) 93.60 (3) 86.40 (3) 37.17 (3) 142.83 (3) 126.49 (3) 53.51 (3) 117.32 (3) 62.68 (3) 148.44 (3) 31.55 (3) 86.40 (3)

Acta Cryst. (2014). C70, 613-616

sup-4

supplementary materials O5—Sr1—O1 O7—Sr1—O1 N2—Sr1—O1 O7iii—Sr1—O1 O6i—Sr1—O3ii O9—Sr1—O3ii O4ii—Sr1—O3ii O5—Sr1—O3ii O7—Sr1—O3ii N2—Sr1—O3ii O7iii—Sr1—O3ii O1—Sr1—O3ii O6i—Sr1—C7ii O9—Sr1—C7ii O4ii—Sr1—C7ii O5—Sr1—C7ii O7—Sr1—C7ii N2—Sr1—C7ii O7iii—Sr1—C7ii O1—Sr1—C7ii O3ii—Sr1—C7ii O6i—Sr1—Sr1iii O9—Sr1—Sr1iii O4ii—Sr1—Sr1iii O5—Sr1—Sr1iii O7—Sr1—Sr1iii N2—Sr1—Sr1iii O7iii—Sr1—Sr1iii O1—Sr1—Sr1iii O3ii—Sr1—Sr1iii C7ii—Sr1—Sr1iii O6i—Sr1—Sr2 O9—Sr1—Sr2 O4ii—Sr1—Sr2 O5—Sr1—Sr2 O7—Sr1—Sr2 N2—Sr1—Sr2 O7iii—Sr1—Sr2 O1—Sr1—Sr2 O3ii—Sr1—Sr2 C7ii—Sr1—Sr2 Sr1iii—Sr1—Sr2 O8iii—Sr2—O8iv O8iii—Sr2—O4ii O8iv—Sr2—O4ii O8iii—Sr2—O4 O8iv—Sr2—O4 O4ii—Sr2—O4 O8iii—Sr2—N1

Acta Cryst. (2014). C70, 613-616

68.00 (4) 162.74 (4) 126.51 (4) 91.02 (4) 71.05 (4) 145.00 (4) 48.05 (4) 142.60 (4) 72.59 (4) 117.83 (4) 70.65 (4) 110.35 (4) 75.24 (5) 140.08 (5) 24.21 (4) 135.72 (5) 94.63 (5) 140.93 (5) 66.46 (5) 86.21 (5) 24.37 (4) 128.56 (3) 79.92 (3) 96.32 (3) 146.03 (3) 37.54 (3) 93.81 (3) 36.13 (3) 126.73 (3) 66.78 (3) 78.23 (3) 97.15 (3) 100.79 (3) 30.65 (3) 104.69 (3) 134.24 (3) 164.41 (3) 65.28 (3) 37.98 (3) 75.42 (3) 51.27 (3) 99.387 (6) 180.00 (8) 79.07 (4) 100.93 (4) 100.93 (4) 79.07 (4) 180.00 (5) 96.48 (5)

N1ii—Sr2—Sr1ii O1—Sr2—Sr1ii O1ii—Sr2—Sr1ii C8iv—Sr2—Sr1ii C8iii—Sr2—Sr1ii Sr1—Sr2—Sr1ii C2—N1—C6 C2—N1—Sr2 C6—N1—Sr2 C9—N2—C13 C9—N2—Sr1 C13—N2—Sr1 O1—C1—O2 O1—C1—C2 O2—C1—C2 N1—C2—C3 N1—C2—C1 C3—C2—C1 C2—C3—C4 C2—C3—H3 C4—C3—H3 C5—C4—C3 C5—C4—H4 C3—C4—H4 C6—C5—C4 C6—C5—H5 C4—C5—H5 N1—C6—C5 N1—C6—C7 C5—C6—C7 O3—C7—O4 O3—C7—C6 O4—C7—C6 O3—C7—Sr1ii O4—C7—Sr1ii C6—C7—Sr1ii O8—C8—O7 O8—C8—C9 O7—C8—C9 O8—C8—Sr2v O7—C8—Sr2v C9—C8—Sr2v N2—C9—C10 N2—C9—C8 C10—C9—C8 C11—C10—C9 C11—C10—H10 C9—C10—H10 C10—C11—C12

93.60 (3) 142.83 (3) 37.17 (3) 53.51 (3) 126.49 (3) 180.0 117.31 (16) 124.01 (12) 118.68 (12) 118.30 (16) 120.11 (12) 121.36 (11) 125.19 (18) 120.69 (17) 114.10 (17) 123.46 (17) 114.34 (17) 122.21 (17) 118.63 (19) 120.7 120.7 118.65 (19) 120.7 120.7 118.59 (18) 120.7 120.7 123.31 (18) 114.11 (16) 122.57 (17) 124.13 (18) 119.32 (17) 116.48 (16) 68.44 (10) 57.96 (9) 160.48 (13) 126.06 (18) 116.28 (17) 117.60 (16) 34.72 (9) 114.41 (12) 114.48 (11) 122.33 (18) 115.91 (16) 121.58 (16) 119.11 (17) 120.4 120.4 118.85 (17)

sup-5

supplementary materials O8iv—Sr2—N1 O4ii—Sr2—N1 O4—Sr2—N1 O8iii—Sr2—N1ii O8iv—Sr2—N1ii O4ii—Sr2—N1ii O4—Sr2—N1ii N1—Sr2—N1ii O8iii—Sr2—O1 O8iv—Sr2—O1 O4ii—Sr2—O1 O4—Sr2—O1 N1—Sr2—O1 N1ii—Sr2—O1 O8iii—Sr2—O1ii O8iv—Sr2—O1ii O4ii—Sr2—O1ii O4—Sr2—O1ii N1—Sr2—O1ii N1ii—Sr2—O1ii O1—Sr2—O1ii O8iii—Sr2—C8iv O8iv—Sr2—C8iv O4ii—Sr2—C8iv O4—Sr2—C8iv N1—Sr2—C8iv N1ii—Sr2—C8iv O1—Sr2—C8iv O1ii—Sr2—C8iv

83.52 (5) 120.04 (4) 59.96 (4) 83.52 (5) 96.48 (5) 59.96 (4) 120.04 (4) 180.00 (6) 80.26 (4) 99.74 (4) 62.34 (4) 117.66 (4) 58.03 (4) 121.97 (4) 99.74 (4) 80.26 (4) 117.66 (4) 62.34 (4) 121.97 (4) 58.03 (4) 180.0 163.15 (5) 16.85 (5) 116.17 (4) 63.83 (4) 70.13 (4) 109.87 (4) 99.99 (4) 80.01 (4)

C10—C11—H11 C12—C11—H11 C11—C12—C13 C11—C12—H12 C13—C12—H12 N2—C13—C12 N2—C13—C77 C12—C13—C77 O6—C77—O5 O6—C77—C13 O5—C77—C13 C1—O1—Sr1 C1—O1—Sr2 Sr1—O1—Sr2 C1—O2—H2 C7—O3—Sr1ii C7—O4—Sr2 C7—O4—Sr1ii Sr2—O4—Sr1ii C77—O5—Sr1 C77—O6—Sr1vi C8—O7—Sr1 C8—O7—Sr1iii Sr1—O7—Sr1iii C8—O8—Sr2v Sr1—O9—H9B Sr1—O9—H9A H9B—O9—H9A H2B—O2S—H2A

120.6 120.6 118.39 (18) 120.8 120.8 122.95 (17) 115.97 (16) 121.01 (17) 125.29 (17) 118.99 (16) 115.70 (16) 130.76 (12) 122.50 (12) 104.85 (4) 114.5 87.19 (11) 127.06 (12) 97.83 (10) 117.79 (5) 125.58 (11) 161.64 (13) 123.58 (12) 126.79 (11) 106.33 (5) 128.43 (12) 110.4 122.4 99.1 104.6

O6i—Sr1—Sr2—O8iii O9—Sr1—Sr2—O8iii O4ii—Sr1—Sr2—O8iii O5—Sr1—Sr2—O8iii O7—Sr1—Sr2—O8iii N2—Sr1—Sr2—O8iii O7iii—Sr1—Sr2—O8iii O1—Sr1—Sr2—O8iii O3ii—Sr1—Sr2—O8iii C7ii—Sr1—Sr2—O8iii Sr1iii—Sr1—Sr2—O8iii O6i—Sr1—Sr2—O8iv O9—Sr1—Sr2—O8iv O4ii—Sr1—Sr2—O8iv O5—Sr1—Sr2—O8iv O7—Sr1—Sr2—O8iv N2—Sr1—Sr2—O8iv O7iii—Sr1—Sr2—O8iv O1—Sr1—Sr2—O8iv

−160.26 (5) 52.27 (5) −115.70 (7) 126.68 (5) −45.25 (6) 118.33 (13) −16.93 (5) 111.49 (6) −92.03 (5) −95.72 (6) −29.15 (4) 19.74 (5) −127.73 (5) 64.30 (7) −53.32 (5) 134.75 (6) −61.67 (13) 163.07 (5) −68.51 (6)

O1—C1—C2—C3 O2—C1—C2—C3 N1—C2—C3—C4 C1—C2—C3—C4 C2—C3—C4—C5 C3—C4—C5—C6 C2—N1—C6—C5 Sr2—N1—C6—C5 C2—N1—C6—C7 Sr2—N1—C6—C7 C4—C5—C6—N1 C4—C5—C6—C7 N1—C6—C7—O3 C5—C6—C7—O3 N1—C6—C7—O4 C5—C6—C7—O4 N1—C6—C7—Sr1ii C5—C6—C7—Sr1ii C13—N2—C9—C10

−173.7 (2) 8.0 (3) 1.6 (3) −177.87 (19) 0.7 (3) −2.2 (3) 0.7 (3) −179.93 (15) −178.51 (16) 0.9 (2) 1.5 (3) −179.36 (19) 162.32 (17) −16.9 (3) −14.9 (2) 165.93 (18) 53.5 (4) −125.7 (3) 1.0 (3)

Acta Cryst. (2014). C70, 613-616

sup-6

supplementary materials O3ii—Sr1—Sr2—O8iv C7ii—Sr1—Sr2—O8iv Sr1iii—Sr1—Sr2—O8iv O6i—Sr1—Sr2—O4ii O9—Sr1—Sr2—O4ii O5—Sr1—Sr2—O4ii O7—Sr1—Sr2—O4ii N2—Sr1—Sr2—O4ii O7iii—Sr1—Sr2—O4ii O1—Sr1—Sr2—O4ii O3ii—Sr1—Sr2—O4ii C7ii—Sr1—Sr2—O4ii Sr1iii—Sr1—Sr2—O4ii O6i—Sr1—Sr2—O4 O9—Sr1—Sr2—O4 O4ii—Sr1—Sr2—O4 O5—Sr1—Sr2—O4 O7—Sr1—Sr2—O4 N2—Sr1—Sr2—O4 O7iii—Sr1—Sr2—O4 O1—Sr1—Sr2—O4 O3ii—Sr1—Sr2—O4 C7ii—Sr1—Sr2—O4 Sr1iii—Sr1—Sr2—O4 O6i—Sr1—Sr2—N1 O9—Sr1—Sr2—N1 O4ii—Sr1—Sr2—N1 O5—Sr1—Sr2—N1 O7—Sr1—Sr2—N1 N2—Sr1—Sr2—N1 O7iii—Sr1—Sr2—N1 O1—Sr1—Sr2—N1 O3ii—Sr1—Sr2—N1 C7ii—Sr1—Sr2—N1 Sr1iii—Sr1—Sr2—N1 O6i—Sr1—Sr2—N1ii O9—Sr1—Sr2—N1ii O4ii—Sr1—Sr2—N1ii O5—Sr1—Sr2—N1ii O7—Sr1—Sr2—N1ii N2—Sr1—Sr2—N1ii O7iii—Sr1—Sr2—N1ii O1—Sr1—Sr2—N1ii O3ii—Sr1—Sr2—N1ii C7ii—Sr1—Sr2—N1ii Sr1iii—Sr1—Sr2—N1ii O6i—Sr1—Sr2—O1 O9—Sr1—Sr2—O1 O4ii—Sr1—Sr2—O1

Acta Cryst. (2014). C70, 613-616

87.97 (5) 84.28 (6) 150.85 (4) −44.57 (7) 167.97 (7) −117.62 (7) 70.44 (7) −125.97 (14) 98.76 (7) −132.82 (8) 23.67 (6) 19.97 (7) 86.54 (6) 135.43 (7) −12.03 (7) 180.0 62.37 (7) −109.56 (7) 54.02 (14) −81.24 (7) 47.18 (8) −156.33 (6) −160.03 (7) −93.46 (6) 104.30 (5) −43.17 (5) 148.86 (7) 31.24 (5) −140.69 (5) 22.89 (13) −112.37 (5) 16.05 (6) 172.53 (4) 168.84 (6) −124.59 (3) −75.70 (5) 136.83 (5) −31.14 (7) −148.76 (5) 39.31 (5) −157.11 (13) 67.63 (5) −163.95 (6) −7.47 (4) −11.16 (6) 55.41 (3) 88.25 (6) −59.21 (6) 132.82 (8)

Sr1—N2—C9—C10 C13—N2—C9—C8 Sr1—N2—C9—C8 O8—C8—C9—N2 O7—C8—C9—N2 Sr2v—C8—C9—N2 O8—C8—C9—C10 O7—C8—C9—C10 Sr2v—C8—C9—C10 N2—C9—C10—C11 C8—C9—C10—C11 C9—C10—C11—C12 C10—C11—C12—C13 C9—N2—C13—C12 Sr1—N2—C13—C12 C9—N2—C13—C77 Sr1—N2—C13—C77 C11—C12—C13—N2 C11—C12—C13—C77 N2—C13—C77—O6 C12—C13—C77—O6 N2—C13—C77—O5 C12—C13—C77—O5 O2—C1—O1—Sr1 C2—C1—O1—Sr1 O2—C1—O1—Sr2 C2—C1—O1—Sr2 O6i—Sr1—O1—C1 O9—Sr1—O1—C1 O4ii—Sr1—O1—C1 O5—Sr1—O1—C1 O7—Sr1—O1—C1 N2—Sr1—O1—C1 O7iii—Sr1—O1—C1 O3ii—Sr1—O1—C1 C7ii—Sr1—O1—C1 Sr1iii—Sr1—O1—C1 Sr2—Sr1—O1—C1 O6i—Sr1—O1—Sr2 O9—Sr1—O1—Sr2 O4ii—Sr1—O1—Sr2 O5—Sr1—O1—Sr2 O7—Sr1—O1—Sr2 N2—Sr1—O1—Sr2 O7iii—Sr1—O1—Sr2 O3ii—Sr1—O1—Sr2 C7ii—Sr1—O1—Sr2 Sr1iii—Sr1—O1—Sr2 O8iii—Sr2—O1—C1

175.57 (14) −174.17 (16) 0.5 (2) −172.30 (17) 10.6 (3) 149.19 (13) 12.5 (3) −164.59 (18) −26.0 (2) −2.6 (3) 172.24 (18) 1.9 (3) 0.3 (3) 1.4 (3) −173.15 (14) 178.35 (16) 3.8 (2) −2.0 (3) −178.84 (18) −172.34 (17) 4.7 (3) 6.2 (2) −176.83 (17) −28.2 (3) 153.67 (13) 169.93 (15) −8.2 (3) 99.98 (18) −43.01 (18) 170.78 (19) 31.63 (17) −91.8 (2) 18.0 (2) −118.85 (18) 171.45 (17) 174.82 (18) −112.91 (17) −164.2 (2) −95.79 (5) 121.22 (5) −24.98 (4) −164.13 (6) 72.45 (15) −177.72 (5) 45.38 (5) −24.32 (6) −20.94 (5) 51.32 (6) 108.86 (16)

sup-7

supplementary materials O5—Sr1—Sr2—O1 O7—Sr1—Sr2—O1 N2—Sr1—Sr2—O1 O7iii—Sr1—Sr2—O1 O3ii—Sr1—Sr2—O1 C7ii—Sr1—Sr2—O1 Sr1iii—Sr1—Sr2—O1 O6i—Sr1—Sr2—O1ii O9—Sr1—Sr2—O1ii O4ii—Sr1—Sr2—O1ii O5—Sr1—Sr2—O1ii O7—Sr1—Sr2—O1ii N2—Sr1—Sr2—O1ii O7iii—Sr1—Sr2—O1ii O1—Sr1—Sr2—O1ii O3ii—Sr1—Sr2—O1ii C7ii—Sr1—Sr2—O1ii Sr1iii—Sr1—Sr2—O1ii O6i—Sr1—Sr2—C8iv O9—Sr1—Sr2—C8iv O4ii—Sr1—Sr2—C8iv O5—Sr1—Sr2—C8iv O7—Sr1—Sr2—C8iv N2—Sr1—Sr2—C8iv O7iii—Sr1—Sr2—C8iv O1—Sr1—Sr2—C8iv O3ii—Sr1—Sr2—C8iv C7ii—Sr1—Sr2—C8iv Sr1iii—Sr1—Sr2—C8iv O6i—Sr1—Sr2—C8iii O9—Sr1—Sr2—C8iii O4ii—Sr1—Sr2—C8iii O5—Sr1—Sr2—C8iii O7—Sr1—Sr2—C8iii N2—Sr1—Sr2—C8iii O7iii—Sr1—Sr2—C8iii O1—Sr1—Sr2—C8iii O3ii—Sr1—Sr2—C8iii C7ii—Sr1—Sr2—C8iii Sr1iii—Sr1—Sr2—C8iii O8iii—Sr2—N1—C2 O8iv—Sr2—N1—C2 O4ii—Sr2—N1—C2 O4—Sr2—N1—C2 O1—Sr2—N1—C2 O1ii—Sr2—N1—C2 C8iv—Sr2—N1—C2 C8iii—Sr2—N1—C2 Sr1—Sr2—N1—C2

Acta Cryst. (2014). C70, 613-616

15.19 (6) −156.74 (7) 6.84 (14) −128.42 (6) 156.48 (6) 152.79 (7) −140.64 (5) −91.75 (6) 120.79 (6) −47.18 (8) −164.81 (6) 23.26 (7) −173.16 (14) 51.58 (6) 180.0 −23.52 (6) −27.21 (7) 39.36 (5) 36.45 (5) −111.02 (5) 81.01 (7) −36.61 (5) 151.46 (6) −44.96 (13) 179.78 (5) −51.80 (6) 104.68 (5) 100.99 (6) 167.56 (4) −143.55 (5) 68.98 (5) −98.99 (7) 143.39 (5) −28.54 (6) 135.04 (13) −0.22 (5) 128.20 (6) −75.32 (5) −79.01 (6) −12.44 (4) −75.13 (15) 104.87 (15) 5.98 (16) −174.03 (16) −0.89 (13) 179.11 (13) 115.41 (15) −64.59 (15) −12.24 (14)

O8iv—Sr2—O1—C1 O4ii—Sr2—O1—C1 O4—Sr2—O1—C1 N1—Sr2—O1—C1 N1ii—Sr2—O1—C1 C8iv—Sr2—O1—C1 C8iii—Sr2—O1—C1 Sr1—Sr2—O1—C1 Sr1ii—Sr2—O1—C1 O8iii—Sr2—O1—Sr1 O8iv—Sr2—O1—Sr1 O4ii—Sr2—O1—Sr1 O4—Sr2—O1—Sr1 N1—Sr2—O1—Sr1 N1ii—Sr2—O1—Sr1 C8iv—Sr2—O1—Sr1 C8iii—Sr2—O1—Sr1 Sr1ii—Sr2—O1—Sr1 O4—C7—O3—Sr1ii C6—C7—O3—Sr1ii O3—C7—O4—Sr2 C6—C7—O4—Sr2 Sr1ii—C7—O4—Sr2 O3—C7—O4—Sr1ii C6—C7—O4—Sr1ii O8iii—Sr2—O4—C7 O8iv—Sr2—O4—C7 N1—Sr2—O4—C7 N1ii—Sr2—O4—C7 O1—Sr2—O4—C7 O1ii—Sr2—O4—C7 C8iv—Sr2—O4—C7 C8iii—Sr2—O4—C7 Sr1—Sr2—O4—C7 Sr1ii—Sr2—O4—C7 O8iii—Sr2—O4—Sr1ii O8iv—Sr2—O4—Sr1ii N1—Sr2—O4—Sr1ii N1ii—Sr2—O4—Sr1ii O1—Sr2—O4—Sr1ii O1ii—Sr2—O4—Sr1ii C8iv—Sr2—O4—Sr1ii C8iii—Sr2—O4—Sr1ii Sr1—Sr2—O4—Sr1ii O6—C77—O5—Sr1 C13—C77—O5—Sr1 O6i—Sr1—O5—C77 O9—Sr1—O5—C77 O4ii—Sr1—O5—C77

−71.14 (16) −168.44 (17) 11.56 (17) 4.85 (15) −175.15 (15) −54.03 (16) 125.97 (16) 165.88 (18) −14.12 (18) −57.01 (5) 122.99 (5) 25.68 (4) −154.32 (4) −161.02 (7) 18.98 (7) 140.09 (5) −39.91 (5) 180.0 16.85 (18) −160.13 (15) −152.46 (14) 24.6 (2) −133.92 (13) −18.5 (2) 158.51 (13) −108.39 (14) 71.61 (14) −17.18 (14) 162.82 (14) −23.75 (16) 156.25 (16) 64.00 (14) −116.00 (14) −53.77 (17) 126.23 (17) 125.38 (6) −54.62 (6) −143.41 (7) 36.59 (7) −149.98 (5) 30.02 (5) −62.23 (6) 117.77 (6) 180.0 164.23 (14) −14.2 (2) 101.25 (15) −69.03 (14) 163.76 (14)

sup-8

supplementary materials Sr1ii—Sr2—N1—C2 O8iii—Sr2—N1—C6 O8iv—Sr2—N1—C6 O4ii—Sr2—N1—C6 O4—Sr2—N1—C6 O1—Sr2—N1—C6 O1ii—Sr2—N1—C6 C8iv—Sr2—N1—C6 C8iii—Sr2—N1—C6 Sr1—Sr2—N1—C6 Sr1ii—Sr2—N1—C6 O6i—Sr1—N2—C9 O9—Sr1—N2—C9 O4ii—Sr1—N2—C9 O5—Sr1—N2—C9 O7—Sr1—N2—C9 O7iii—Sr1—N2—C9 O1—Sr1—N2—C9 O3ii—Sr1—N2—C9 C7ii—Sr1—N2—C9 Sr1iii—Sr1—N2—C9 Sr2—Sr1—N2—C9 O6i—Sr1—N2—C13 O9—Sr1—N2—C13 O4ii—Sr1—N2—C13 O5—Sr1—N2—C13 O7—Sr1—N2—C13 O7iii—Sr1—N2—C13 O1—Sr1—N2—C13 O3ii—Sr1—N2—C13 C7ii—Sr1—N2—C13 Sr1iii—Sr1—N2—C13 Sr2—Sr1—N2—C13 C6—N1—C2—C3 Sr2—N1—C2—C3 C6—N1—C2—C1 Sr2—N1—C2—C1 O1—C1—C2—N1 O2—C1—C2—N1

167.76 (14) 105.51 (14) −74.49 (14) −173.38 (12) 6.62 (12) 179.76 (15) −0.24 (15) −63.95 (13) 116.05 (13) 168.40 (13) −11.60 (13) 104.19 (14) −102.56 (14) 89.93 (17) 178.48 (15) −5.58 (13) −43.64 (15) −166.94 (12) 41.41 (15) 51.70 (17) −24.28 (14) −172.17 (10) −81.36 (14) 71.89 (14) −95.62 (17) −7.06 (13) 168.87 (15) 130.81 (13) 7.52 (16) −144.14 (13) −133.85 (13) 150.17 (13) 2.3 (2) −2.3 (3) 178.36 (15) 177.24 (16) −2.1 (2) 6.8 (3) −171.54 (17)

O7—Sr1—O5—C77 N2—Sr1—O5—C77 O7iii—Sr1—O5—C77 O1—Sr1—O5—C77 O3ii—Sr1—O5—C77 C7ii—Sr1—O5—C77 Sr1iii—Sr1—O5—C77 Sr2—Sr1—O5—C77 O5—C77—O6—Sr1vi C13—C77—O6—Sr1vi O8—C8—O7—Sr1 C9—C8—O7—Sr1 Sr2v—C8—O7—Sr1 O8—C8—O7—Sr1iii C9—C8—O7—Sr1iii Sr2v—C8—O7—Sr1iii O6i—Sr1—O7—C8 O9—Sr1—O7—C8 O4ii—Sr1—O7—C8 O5—Sr1—O7—C8 N2—Sr1—O7—C8 O7iii—Sr1—O7—C8 O1—Sr1—O7—C8 O3ii—Sr1—O7—C8 C7ii—Sr1—O7—C8 Sr1iii—Sr1—O7—C8 Sr2—Sr1—O7—C8 O6i—Sr1—O7—Sr1iii O9—Sr1—O7—Sr1iii O4ii—Sr1—O7—Sr1iii O5—Sr1—O7—Sr1iii N2—Sr1—O7—Sr1iii O7iii—Sr1—O7—Sr1iii O1—Sr1—O7—Sr1iii O3ii—Sr1—O7—Sr1iii C7ii—Sr1—O7—Sr1iii Sr2—Sr1—O7—Sr1iii O7—C8—O8—Sr2v C9—C8—O8—Sr2v

7.38 (16) 11.51 (14) −98.02 (15) −155.89 (16) 109.00 (15) 145.20 (14) −32.20 (17) −165.91 (14) 91.0 (4) −90.7 (4) 165.97 (14) −17.2 (2) −155.85 (6) −37.4 (3) 139.42 (13) 0.78 (18) −59.64 (15) 84.40 (14) −139.49 (14) 16.43 (16) 12.34 (13) 160.67 (17) 132.37 (16) −124.99 (15) −135.52 (14) 160.67 (17) −172.65 (12) 139.69 (5) −76.27 (5) 59.84 (6) −144.24 (5) −148.32 (7) 0.0 −28.30 (16) 74.34 (5) 63.82 (5) 26.69 (7) 81.2 (2) −95.67 (18)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, −y, −z; (iii) −x+1, −y, −z; (iv) x−1, y, z; (v) x+1, y, z; (vi) −x+1, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

O2—H2···O5 O9—H9B···O3v O9—H9A···O2S O2S—H2B···O3vii

0.85 0.85 0.85 0.85

1.64 1.94 1.98 1.97

2.4666 (19) 2.7615 (19) 2.824 (2) 2.808 (2)

164 163 170 168

Acta Cryst. (2014). C70, 613-616

sup-9

supplementary materials O2S—H2A···O5vi O2S—H2A···O6

0.85 0.85

2.48 2.40

3.235 (2) 3.033 (2)

148 132

Symmetry codes: (v) x+1, y, z; (vi) −x+1, y+1/2, −z+1/2; (vii) −x, −y+1, −z.

Acta Cryst. (2014). C70, 613-616

sup-10

A new three-dimensional coordination polymer of Sr(II) based on dipicolinic acid, with different coordination environments for Sr(II).

A three-dimensional coordination polymer of Sr(II) based on dipicolinic acid (pydcH2) has been synthesized and characterized, namely poly[[diaquabis(μ...
769KB Sizes 2 Downloads 3 Views