metal-organic compounds Acta Crystallographica Section C

Crystal Structure Communications ISSN 0108-2701

A one-dimensional coordination polymer created via in situ ligand synthesis involving C—N bond formation

addition examples exist in which ligand molecules are cleaved (Han et al., 2006; Wang et al., 2005) or condense with other molecules that are present in the system (Li et al., 2006; Zhang et al., 2006). We report here the synthesis of a coordination polymer of cadmium which comprises a ligand molecule not included in the original reaction mixture but instead formed in situ during hydrothermal treatment.

Hua Cai,* Ying Guo and Jian-Gang Li College of Science, Civil Aviation University of China, Tianjin 300300, People’s Republic of China Correspondence e-mail: [email protected] Received 18 July 2013 Accepted 5 September 2013

The novel cadmium complex catena-poly[cadmium(II)-3-{2[3-(pyridin-2-yl)-1H-pyrazol-1-yl]butanedioato}], [Cd(C12H9N3O4)]n, has been prepared by the conjugate addition reaction of 2-(1H-pyrazol-3-yl)pyridine to fumaric acid in the presence of Cd(OAc)23H2O (OAc is acetate) at 413 K. Single-crystal X-ray diffraction analysis reveals that the complex consists of one-dimensional ladders constructed from [Cd2(COO)2] dimeric subunits. A combination of hydrogen bonding and – stacking interactions extend the one-dimensional ladders into a three-dimensional supramolecular architecture. Keywords: crystal structure; cadmium complex; onedimensional coordination polymer; in situ ligand synthesis; 2-[3-(pyridin-2-yl)-1H-pyrazol-1-yl]butanedioic acid ligand; C—N bond formation.

1. Introduction The structural and functional diversity of coordination polymers has brought these materials wide attention in recent years (Cheetham et al., 2006; Rao et al., 2004; O’Keeffe et al., 2000). A large number of the structures reported to date have been prepared hydrothermally or solvothermally in the temperature range 373–523 K. In most cases, the ligand molecule included in the starting mixture is incorporated directly into the resultant framework structure. However, under superheated solution conditions, chemical changes to the ligand molecule itself can occur, some of which are previously unreported in the organic chemical literature (Russell et al., 2007). In the case of the cyclohex-4-ene-1,2-dicarboxylate frameworks studied by Lee et al. (2006) and Kim et al. (2004), sufficiently high temperatures lead to cis–trans ring isomerism in the ligand molecules, yielding frameworks of the new isomer. Examples in the literature exist in which functional groups have been added to (Yang et al., 2005; Xiao et al., 2006), removed from (Sun et al., 2006; Peng et al., 2006) or modified in the ligand molecule (Tang et al., 2006; Zhou et al., 2006). In Acta Cryst. (2013). C69, 1307–1310

2. Experimental 2.1. Synthesis and crystallization

A mixture containing Cd(OAc)23H2O (OAc is acetate; 23.1 mg, 0.10 mmol), L (14.5 mg, 0.10 mmol), fumaric acid (11.6 mg, 0.10 mmol) and water (10 ml) was sealed in a Teflonlined stainless steel vessel (20 ml), which was heated at 413 K for 3 d and then cooled to room temperature at a rate of 5 K h1. Colourless block-shaped crystals suitable for X-ray analysis were obtained in a yield of 45%. Analysis calculated

Figure 1 A view of the local coordination of the CdII cation in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x + 1, y + 1, z + 1; (ii) x, y + 1, z + 1.]

doi:10.1107/S010827011302475X

# 2013 International Union of Crystallography

1307

metal-organic compounds for C12H9CdN3O4: C 38.78, H 2.44, N 11.31%; found: C 38.61, H 2.39, N 11.39%. 2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Although all H atoms were visible in difference maps, they were placed in geometrically calculated positions, with C—H = 0.93 (aromatic), 0.97 ˚ (methine), and included in the final (methylene) and 0.98 A refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

3. Results and discussion catena-Poly[cadmium(II)-3-{2-[3-(pyridin-2-yl)-1H-pyrazol1-yl]butanedioato}], (I), was synthesized from cadmium acetate, 2-(1H-pyrazol-3-yl)pyridine and fumaric acid. The ligand is formed by the conjugate addition of 2-(1H-pyrazol-3yl)pyridine to fumaric acid as shown in the Scheme. Structural studies on ligands arising from such C C double-bond addition reactions are unreported in metal coordination chemistry, as suggested by a Cambridge Structural Database (CSD) search (Version 5.34, November 2012; Allen, 2002). Single-crystal X-ray analysis of (I) shows that the asymmetric unit contains one CdII cation and one 2-[3-(pyridin-2-yl)-1Hpyrazol-1-yl]butanedioate (PPS2) dianion. As shown in Fig. 1, each CdII atom is five-coordinated by two N atoms of one PPS2 ligand and by three carboxylate O atoms from three different PPS2 ligands to form a distorted square-pyramidal geometry (Table 2) with a  parameter of 0.087 ( = 0 for an ideal square-pyramidal geometry and  = 1 for an ideal trigonal bipyramidal geometry; Addison et al., 1984). Each PPS2 ligand acts as a 3-bridge linking three metal ions, and this results in a one-dimensional ladder extending along the [100] direction with the commonly observed [Cd2(COO)2] dimeric subunits, in which the Cd  Cd distance is ˚ (Fig. 2). Investigation of the crystal packing 4.5419 (12) A reveals that adjacent PPS2 entities are held together by a combination of weak C3—H3  O4iii and C4—H4  O3iv hydrogen-bonding interactions (see Table 3 for symmetry

Table 1 Experimental details. Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A , ,  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin / )max (A Refinement R[F 2 > 2(F 2)], wR(F 2), S No. of reflections No. of parameters H-atom treatment ˚ 3)  max,  min (e A

[Cd(C12H9N3O4)] 371.62 Triclinic, P1 296 7.744 (2), 8.745 (2), 8.812 (2) 84.933 (4), 89.017 (4), 88.148 (4) 594.0 (3) 2 Mo K 1.86 0.28  0.22  0.20

Bruker APEXII CCD area-detector diffractometer Multi-scan (SADABS; Bruker, 2003) 0.625, 0.708 3051, 2082, 1876 0.011 0.595

0.022, 0.054, 1.05 2082 181 H-atom parameters constrained 0.49, 0.41

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2003), DIAMOND (Brandenburg & Berndt, 2005) and SHELXTL (Bruker, 2003).

codes) and – stacking interactions to generate a twodimensional layer array extending in the crystallographic [110] plane, as shown in Fig. 3. The – stacking consists of antiparallel pyridine–pyrazole dimers having centroid–centroid distances between the pyrazole and pyridine rings of ˚ , a perpendicular distance from one plane to the 3.832 (2) A ˚ and a dihedral angle centroid of the adjacent ring of ca 3.6 A  of 9.0 (2) . Each dimer is weakly -stacked to an adjecent ˚, a dimer, with a centroid–centroid distance of 4.166 (2) A perpendicular distance from one plane to the centroid of the ˚ and a dihedral angle of 9.0 (2) . adjacent ring of ca 3.7 A Additionally, adjacent two-dimensional motifs are aligned in a parallel manner and are extended into a three-dimensional supramolecular network by weak C10—H10  O2v hydrogen-

Figure 2 A perspective view of the one-dimensional ladder extending along the [100] direction in (I).

1308

Cai et al.



[Cd(C12H9N3O4)]

Acta Cryst. (2013). C69, 1307–1310

metal-organic compounds

Figure 4 Figure 3 The two-dimensional structure of (I) formed through hydrogen-bonding and – stacking interactions within the [110] plane.

bonding interactions (Table 3 and Fig. 4). The geometry for the C3—H3  O4iii, C4—H4  O3iv and C10—H10  O2v hydrogen bonds (Table 3) falls within the ranges of weak hydrogen-bond distances and angles (Desiraju, 2002). This indicates that beyond metal coordination, PPS2 also has potential sites for hydrogen bonding and aromatic stacking for the formation of supramolecular networks. In summary, a novel one-dimensional coordination polymer is formed from 2-(1H-pyrazol-3-yl)pyridine, fumaric acid and Cd(OAc)23H2O, and diplays a three-dimensional supramolecular framework. Notably, this is also the first metal

The three-dimensional supramolecular framework of (I) formed through weak C—H  O hydrogen-bonding interactions.

coordination polymer with the PPS2 ligand, and we are currently exploring other coordination polymers based on this multifunctional building block, which may display interesting crystalline networks with useful properties. The authors acknowledge financial support by the National Natural Science Foundation of the China Civil Aviation Administration of China (grant No. 61079010). Supplementary data for this paper are available from the IUCr electronic archives (Reference: WQ3045). Services for accessing these data are described at the back of the journal.

Table 2 ˚ ,  ). Selected geometric parameters (A

References

Cd1—O1i Cd1—O4ii Cd1—N2

2.216 (2) 2.238 (2) 2.294 (2)

Cd1—O3 Cd1—N1

2.311 (2) 2.367 (3)

O1i—Cd1—O4ii O1i—Cd1—N2 O4ii—Cd1—N2 O1i—Cd1—O3 O4ii—Cd1—O3

90.56 (9) 126.85 (9) 142.56 (9) 89.09 (8) 98.55 (8)

N2—Cd1—O3 O1i—Cd1—N1 O4ii—Cd1—N1 N2—Cd1—N1 O3—Cd1—N1

82.58 (9) 133.39 (9) 86.22 (9) 69.50 (9) 137.37 (9)

Symmetry codes: (i) x þ 1; y þ 1; z þ 1; (ii) x; y þ 1; z þ 1.

Table 3 ˚ ,  ). Hydrogen-bond geometry (A D—H  A iii

C3—H3  O4 C4—H4  O3iv C10—H10  O2v

D—H

H  A

D  A

D—H  A

0.93 0.93 0.98

2.49 2.50 2.40

3.386 (4) 3.361 (4) 3.355 (4)

162 154 165

Symmetry codes: (iii) x; y; z þ 1; (iv) x; y  1; z; (v) x þ 1; y þ 1; z.

Acta Cryst. (2013). C69, 1307–1310

Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. Allen, F. H. (2002). Acta Cryst. B58, 380–388. Brandenburg, K. & Berndt, M. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2003). APEX2, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Cheetham, A. K., Rao, C. N. R. & Feller, R. K. (2006). Chem. Commun. pp. 4780–4795. Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. Han, L., Bu, X., Zhang, Q. & Feng, P. (2006). Inorg. Chem. 45, 5736–5738. Kim, D. S., Forster, P. M., de Delgado, G. D., Park, S.-E. & Cheetham, A. K. (2004). Dalton Trans. pp. 3365–3369. Lee, C., Mellot-Draznieks, C., Slater, B., Wu, G., Harrison, W. T. A., Rao, C. N. R. & Cheetham, A. K. (2006). Chem. Commun. pp. 2687–2689. Li, X.-J., Cao, R., Guo, Z.-G., Wang, Y.-L. & Zhu, X.-D. (2006). J. Mol. Struct. 798, 64–68. O’Keeffe, M., Eddaoudi, M., Li, H., Reineke, T. & Yaghi, O. M. (2000). J. Solid State Chem. 152, 3–20. Peng, M.-X., Hong, C.-G., Tan, C.-K., Chen, J.-C. & Tong, M.-L. (2006). J. Chem. Crystallogr. 36, 703–707. Cai et al.



[Cd(C12H9N3O4)]

1309

metal-organic compounds Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Russell, K. F., Paul, M. F., Fred, W. & Anthony, K. C. (2007). Inorg. Chem. 46, 8717–8721. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 1947–1949. Tang, S.-F., Song, J.-L. & Mao, J.-G. (2006). Eur. J. Inorg. Chem. pp. 2011– 2019.

1310

Cai et al.



[Cd(C12H9N3O4)]

Wang, Y.-T., Fan, H.-H., Wang, H.-Z. & Chen, X.-M. (2005). Inorg. Chem. 44, 4148–4150. Xiao, H.-P. & Zhu, L.-G. (2006). Inorg. Chem. Commun. 9, 1125. Yang, S.-Y., Long, L.-S., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2005). Inorg. Chim. Acta, 358, 1882–1886. Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2006). Cryst. Growth Des. 6, 519–523. Zhou, X.-P., Li, D., Wu, T. & Zhang, X. (2006). Dalton Trans. pp. 2435–2453.

Acta Cryst. (2013). C69, 1307–1310

supplementary materials

supplementary materials Acta Cryst. (2013). C69, 1307-1310

[doi:10.1107/S010827011302475X]

A one-dimensional coordination polymer created via in situ ligand synthesis involving C—N bond formation Hua Cai, Ying Guo and Jian-Gang Li Computing details Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2 (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2003) and DIAMOND (Brandenburg & Berndt, 2005); software used to prepare material for publication: SHELXTL (Bruker, 2003). catena-Poly[cadmium(II)-µ3-{2-[3-(pyridin-2-yl)-1H-pyrazol-1-yl]butanedioato}] Crystal data [Cd(C12H9N3O4)] Mr = 371.62 Triclinic, P1 Hall symbol: -P 1 a = 7.744 (2) Å b = 8.745 (2) Å c = 8.812 (2) Å α = 84.933 (4)° β = 89.017 (4)° γ = 88.148 (4)° V = 594.0 (3) Å3

Z=2 F(000) = 364 Dx = 2.078 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 2039 reflections θ = 2.6–29.1° µ = 1.86 mm−1 T = 296 K Block, colorless 0.28 × 0.22 × 0.20 mm

Data collection Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2003) Tmin = 0.625, Tmax = 0.708

3051 measured reflections 2082 independent reflections 1876 reflections with I > 2σ(I) Rint = 0.011 θmax = 25.0°, θmin = 2.3° h = −8→9 k = −10→9 l = −10→10

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.022 wR(F2) = 0.054 S = 1.05 2082 reflections 181 parameters 0 restraints

Acta Cryst. (2013). C69, 1307-1310

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

sup-1

supplementary materials w = 1/[σ2(Fo2) + (0.030P)2 + 0.2253P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.49 e Å−3 Δρmin = −0.41 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Cd1 O1 O2 O3 O4 N1 N2 N3 C1 H1 C2 H2 C3 H3 C4 H4 C5 C6 C7 H7 C8 H8 C9 C10 H10 C11 H11A H11B C12

x

y

z

Uiso*/Ueq

0.25540 (3) 0.5607 (3) 0.5126 (3) 0.1510 (3) −0.0755 (3) 0.2104 (3) 0.2845 (3) 0.3455 (3) 0.1667 (5) 0.1491 0.1464 (5) 0.1176 0.1698 (5) 0.1564 0.2131 (4) 0.2280 0.2338 (4) 0.2848 (4) 0.3452 (5) 0.3576 0.3818 (5) 0.4242 0.4883 (4) 0.3651 (4) 0.4205 0.1922 (4) 0.1246 0.2132 0.0826 (4)

0.38348 (2) 0.4462 (3) 0.6471 (3) 0.5636 (2) 0.5610 (3) 0.1224 (3) 0.2346 (3) 0.2639 (3) 0.0734 (4) 0.1454 −0.0790 (4) −0.1098 −0.1842 (4) −0.2881 −0.1363 (4) −0.2066 0.0194 (3) 0.0828 (3) 0.0133 (4) −0.0913 0.1313 (4) 0.1222 0.5151 (4) 0.4210 (4) 0.4109 0.5028 (4) 0.4386 0.5969 0.5440 (3)

0.57258 (2) 0.3608 (3) 0.1967 (3) 0.3861 (2) 0.2371 (3) 0.6544 (3) 0.3714 (3) 0.2281 (3) 0.7965 (4) 0.8672 0.8436 (5) 0.9443 0.7386 (5) 0.7674 0.5903 (4) 0.5175 0.5521 (4) 0.3987 (4) 0.2702 (4) 0.2593 0.1645 (4) 0.0662 0.2464 (4) 0.1587 (3) 0.0591 0.1261 (4) 0.0670 0.0625 0.2638 (3)

0.03149 (9) 0.0429 (5) 0.0475 (6) 0.0368 (5) 0.0418 (5) 0.0363 (6) 0.0355 (6) 0.0352 (6) 0.0476 (9) 0.057* 0.0553 (10) 0.066* 0.0511 (9) 0.061* 0.0445 (8) 0.053* 0.0334 (7) 0.0332 (7) 0.0445 (8) 0.053* 0.0444 (8) 0.053* 0.0346 (7) 0.0346 (7) 0.042* 0.0403 (8) 0.048* 0.048* 0.0310 (7)

Atomic displacement parameters (Å2)

Cd1

U11

U22

U33

U12

U13

U23

0.03673 (14)

0.02827 (14)

0.03049 (13)

−0.00031 (9)

−0.00188 (9)

−0.00823 (9)

Acta Cryst. (2013). C69, 1307-1310

sup-2

supplementary materials O1 O2 O3 O4 N1 N2 N3 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

0.0390 (13) 0.0474 (14) 0.0457 (13) 0.0297 (12) 0.0394 (15) 0.0403 (15) 0.0369 (14) 0.061 (2) 0.062 (2) 0.052 (2) 0.046 (2) 0.0286 (15) 0.0315 (16) 0.055 (2) 0.047 (2) 0.0261 (15) 0.0315 (16) 0.0333 (17) 0.0307 (16)

0.0495 (14) 0.0412 (15) 0.0373 (12) 0.0525 (15) 0.0307 (14) 0.0344 (15) 0.0387 (15) 0.0368 (19) 0.044 (2) 0.0309 (19) 0.0297 (18) 0.0300 (17) 0.0281 (17) 0.0327 (18) 0.049 (2) 0.045 (2) 0.0445 (19) 0.057 (2) 0.0257 (16)

0.0414 (13) 0.0543 (15) 0.0279 (11) 0.0442 (13) 0.0391 (15) 0.0329 (14) 0.0314 (14) 0.045 (2) 0.057 (2) 0.069 (3) 0.059 (2) 0.0423 (18) 0.0411 (17) 0.047 (2) 0.0399 (19) 0.0336 (17) 0.0287 (15) 0.0309 (17) 0.0362 (17)

−0.0061 (11) −0.0062 (11) 0.0037 (10) 0.0059 (10) 0.0001 (12) −0.0018 (12) −0.0019 (12) 0.0040 (16) 0.0037 (18) −0.0059 (16) −0.0014 (15) −0.0012 (13) 0.0026 (12) 0.0031 (16) 0.0046 (16) 0.0003 (14) −0.0019 (14) 0.0024 (15) 0.0006 (12)

−0.0059 (10) 0.0046 (11) −0.0032 (10) −0.0019 (10) 0.0018 (12) 0.0035 (11) 0.0018 (11) 0.0124 (17) 0.0150 (19) 0.0074 (19) −0.0037 (17) −0.0032 (13) −0.0059 (13) −0.0021 (16) −0.0003 (15) 0.0076 (13) 0.0049 (13) −0.0034 (13) −0.0022 (13)

−0.0075 (11) −0.0051 (12) −0.0066 (9) −0.0126 (11) −0.0052 (12) −0.0102 (11) −0.0111 (12) −0.0038 (16) 0.0064 (18) 0.0043 (18) −0.0107 (16) −0.0064 (14) −0.0103 (13) −0.0168 (16) −0.0190 (17) −0.0122 (15) −0.0084 (14) −0.0074 (16) −0.0011 (13)

Geometric parameters (Å, º) Cd1—O1i Cd1—O4ii Cd1—N2 Cd1—O3 Cd1—N1 O1—C9 O1—Cd1i O2—C9 O3—C12 O4—C12 O4—Cd1ii N1—C1 N1—C5 N2—C6 N2—N3 N3—C8 N3—C10 C1—C2

2.216 (2) 2.238 (2) 2.294 (2) 2.311 (2) 2.367 (3) 1.259 (4) 2.216 (2) 1.217 (4) 1.237 (4) 1.252 (4) 2.238 (2) 1.329 (4) 1.336 (4) 1.328 (4) 1.347 (4) 1.351 (4) 1.465 (4) 1.373 (5)

C1—H1 C2—C3 C2—H2 C3—C4 C3—H3 C4—C5 C4—H4 C5—C6 C6—C7 C7—C8 C7—H7 C8—H8 C9—C10 C10—C11 C10—H10 C11—C12 C11—H11A C11—H11B

0.9300 1.367 (5) 0.9300 1.376 (5) 0.9300 1.387 (4) 0.9300 1.467 (4) 1.398 (5) 1.361 (5) 0.9300 0.9300 1.540 (4) 1.518 (4) 0.9800 1.532 (4) 0.9700 0.9700

O1i—Cd1—O4ii O1i—Cd1—N2 O4ii—Cd1—N2 O1i—Cd1—O3 O4ii—Cd1—O3 N2—Cd1—O3 O1i—Cd1—N1 O4ii—Cd1—N1 N2—Cd1—N1

90.56 (9) 126.85 (9) 142.56 (9) 89.09 (8) 98.55 (8) 82.58 (9) 133.39 (9) 86.22 (9) 69.50 (9)

C3—C4—H4 C5—C4—H4 N1—C5—C4 N1—C5—C6 C4—C5—C6 N2—C6—C7 N2—C6—C5 C7—C6—C5 C8—C7—C6

120.8 120.8 121.8 (3) 115.2 (3) 123.0 (3) 110.1 (3) 117.7 (3) 132.2 (3) 105.4 (3)

Acta Cryst. (2013). C69, 1307-1310

sup-3

supplementary materials O3—Cd1—N1 C9—O1—Cd1i C12—O3—Cd1 C12—O4—Cd1ii C1—N1—C5 C1—N1—Cd1 C5—N1—Cd1 C6—N2—N3 C6—N2—Cd1 N3—N2—Cd1 N2—N3—C8 N2—N3—C10 C8—N3—C10 N1—C1—C2 N1—C1—H1 C2—C1—H1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3 C3—C4—C5

137.37 (9) 102.9 (2) 129.3 (2) 118.5 (2) 118.7 (3) 123.5 (2) 117.8 (2) 106.5 (2) 118.9 (2) 132.3 (2) 110.4 (3) 121.9 (2) 127.7 (3) 122.9 (3) 118.5 118.5 118.3 (4) 120.9 120.9 120.0 (3) 120.0 120.0 118.3 (3)

C8—C7—H7 C6—C7—H7 N3—C8—C7 N3—C8—H8 C7—C8—H8 O2—C9—O1 O2—C9—C10 O1—C9—C10 N3—C10—C11 N3—C10—C9 C11—C10—C9 N3—C10—H10 C11—C10—H10 C9—C10—H10 C10—C11—C12 C10—C11—H11A C12—C11—H11A C10—C11—H11B C12—C11—H11B H11A—C11—H11B O3—C12—O4 O3—C12—C11 O4—C12—C11

127.3 127.3 107.7 (3) 126.2 126.2 125.4 (3) 117.8 (3) 116.7 (3) 112.2 (3) 113.3 (3) 113.1 (3) 105.8 105.8 105.8 117.0 (3) 108.1 108.1 108.1 108.1 107.3 125.3 (3) 120.8 (3) 113.8 (3)

O1i—Cd1—O3—C12 O4ii—Cd1—O3—C12 N2—Cd1—O3—C12 N1—Cd1—O3—C12 O1i—Cd1—N1—C1 O4ii—Cd1—N1—C1 N2—Cd1—N1—C1 O3—Cd1—N1—C1 O1i—Cd1—N1—C5 O4ii—Cd1—N1—C5 N2—Cd1—N1—C5 O3—Cd1—N1—C5 O1i—Cd1—N2—C6 O4ii—Cd1—N2—C6 O3—Cd1—N2—C6 N1—Cd1—N2—C6 O1i—Cd1—N2—N3 O4ii—Cd1—N2—N3 O3—Cd1—N2—N3 N1—Cd1—N2—N3 C6—N2—N3—C8 Cd1—N2—N3—C8 C6—N2—N3—C10 Cd1—N2—N3—C10 C5—N1—C1—C2

152.8 (3) −116.8 (3) 25.4 (3) −23.0 (3) 61.0 (3) −26.2 (3) −177.2 (3) −124.7 (3) −117.7 (2) 155.1 (2) 4.2 (2) 56.6 (3) 121.3 (2) −61.0 (3) −155.4 (2) −8.2 (2) −39.0 (3) 138.7 (2) 44.3 (3) −168.5 (3) 0.9 (3) 162.9 (2) −179.4 (3) −17.4 (4) 0.8 (5)

C3—C4—C5—N1 C3—C4—C5—C6 N3—N2—C6—C7 Cd1—N2—C6—C7 N3—N2—C6—C5 Cd1—N2—C6—C5 N1—C5—C6—N2 C4—C5—C6—N2 N1—C5—C6—C7 C4—C5—C6—C7 N2—C6—C7—C8 C5—C6—C7—C8 N2—N3—C8—C7 C10—N3—C8—C7 C6—C7—C8—N3 Cd1i—O1—C9—O2 Cd1i—O1—C9—C10 N2—N3—C10—C11 C8—N3—C10—C11 N2—N3—C10—C9 C8—N3—C10—C9 O2—C9—C10—N3 O1—C9—C10—N3 O2—C9—C10—C11 O1—C9—C10—C11

−1.0 (5) 178.1 (3) −0.7 (4) −165.6 (2) 176.3 (3) 11.4 (4) −7.2 (4) 173.7 (3) 169.0 (3) −10.2 (5) 0.3 (4) −176.1 (3) −0.7 (4) 179.6 (3) 0.3 (4) −3.9 (3) 173.1 (2) −69.8 (4) 109.8 (3) 59.7 (4) −120.6 (3) 179.9 (3) 2.6 (4) −51.0 (4) 131.7 (3)

Acta Cryst. (2013). C69, 1307-1310

sup-4

supplementary materials Cd1—N1—C1—C2 N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C1—N1—C5—C4 Cd1—N1—C5—C4 C1—N1—C5—C6 Cd1—N1—C5—C6

−177.8 (3) −1.1 (6) 0.2 (6) 0.7 (6) 0.2 (5) 179.0 (2) −178.9 (3) −0.2 (3)

N3—C10—C11—C12 C9—C10—C11—C12 Cd1—O3—C12—O4 Cd1—O3—C12—C11 Cd1ii—O4—C12—O3 Cd1ii—O4—C12—C11 C10—C11—C12—O3 C10—C11—C12—O4

69.2 (4) −60.4 (4) 104.9 (3) −78.3 (4) −4.2 (4) 178.7 (2) 26.1 (5) −156.7 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º) D—H···A iii

C3—H3···O4 C4—H4···O3iv C10—H10···O2v

D—H

H···A

D···A

D—H···A

0.93 0.93 0.98

2.49 2.50 2.40

3.386 (4) 3.361 (4) 3.355 (4)

162 154 165

Symmetry codes: (iii) −x, −y, −z+1; (iv) x, y−1, z; (v) −x+1, −y+1, −z.

Acta Cryst. (2013). C69, 1307-1310

sup-5

Copyright of Acta Crystallographica: Section C (International Union of Crystallography IUCr) is the property of International Union of Crystallography - IUCr and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

A one-dimensional coordination polymer created via in situ ligand synthesis involving C-N bond formation.

The novel cadmium complex catena-poly[cadmium(II)-μ3-{2-[3-(pyridin-2-yl)-1H-pyrazol-1-yl]butanedioato}], [Cd(C12H9N3O4)]n, has been prepared by the c...
811KB Sizes 0 Downloads 0 Views