A tentative direct microscopic method for counting living marine bacteria

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

KAZUHIRO KOGURE,USHIOS I M I D U ,A N D NOBUOTAGA Ocetr~rRcsetrrch I~rstitrrtr,U~ril~c~r~.sity (:/'Tokyo,Noktr~ro.7bkyo 164, Jtrl)o~r Accepted December 13. 1978 KOCUKE. K., U. S I M I D U ,N. : ~TACA. ~ ~ 1979. A tentative direct microhcopic method forcounting living marine bacteria. Can. J . Microbial. 25: 415-420. Yeast extract (0.025%) and nulidixic acid (0.002%) were added to seawater samples and the samples were incub;~tedfor6 h at 20°C in thedark. Under these conditions, bacterial celisdid not divide but grew to form elongated cells that are easily recognized by a direct microscopic method and epifluorescent microscopic technique. The number of cells thus obtained is proposed 21s a direct count of viable bacterial cells (DVC). With open ocean saniples. DVC was higher than 'viable' plate counts by LIPto three orders of magnitude and lower than the clirect counts by ~tbout one orde~.. KOGUKE, K., U. S I M I I ) et U N. TACA.1979. A tentative direct microscopic method forcounting living marine bacteria. Can. J . Microbial. 25: 415-420. DesCchantillons d'eau nier ;iuxquels furent ajoutes tle I'extrait tle levure (0.025%) et de I'acide nalidixique (0.002%) furent incubes dulant 6h. sans 1~11nie1.e. :I 20°C. SOLIS ces conrlitions les cellules bacteriennes ne se divisent pas, maiselles font une croissance qui ieurconfere une forme allongee, ce qui les rend facilement reconnaissnbles par les methodes d'examens microscopiq~~es directs et par les techniques microscopiques de I'epifluorescence. Le nornbre de cellules ainsi obtenu est propose conime etant Lrn compte direct des cellules bi~cteriennesviables (DVC). A partir d'echantillons pris dans I'ocean. le DVC est trois fois plus eleve que les comptes de 'viables' fait sur plaques, niais il est une foia moins eleve que les comptes faits par examens directs. [Traduit par Iejourn:~l]

Introduction In marine microbiology the vast differences in bacterial numbers enumerated by direct microscopic counts and by the agar-plate method have been shown by many wol-kers (Jannasch and Jones 1959). Although the differences can be partly attributable to the clumping of cells, dead organisms, and non-living particles in the seawater samples, it is obvious that the viable plate count considerably underestimates the bacterial cells actually living in natur-al seawaters. On the other hand, because of the failure to distinguish living cells from dead ones or from non-living particles, the direct count may result in an overestimation of the viable cells present (Pornel-oy and Johannes 1968; Wiebe and Pomeroy 1972). In the open sea the viable count by the agar-plate method is ~isunllyless than 0.1% of the direct count. In the present report we propose a new method for estimating the viable bacterial numbel-s in seawater by a direct mict.oscopic method. The method involves preincubation of the seawater sample with small amounts of yeast extract and nalidixic acid. Although nalidixic acid, which is a specific inhibitor of DNA synthesis (Goss et 0 1 . 1964), prevents cell division of GI-am-negativebacteria, other synthetic pathways continue to operate, which result in the fol-mation of elongated filamentous cells. This

elongation makes it easier to count cell numbers with the microscope. Presumably beca~lseof the abundance of cellular RNA, acridine orange stained bacteria growing at high I-ateswill fluoresce red orange under the fluorescent micl-oscope. In contrast, inactive bacteria which are poor in cellular RNA, fluoresce greenish white (Daley and Hobbie 1975; Hobbie er trl. 1977). Materials and Methods Lnbortrto,:\ Strrdies Or~rr~ri.s~rr trlrcl Prcl)trrtrtio~r.s P.scrrt/o~rro~rtr.s sp. 108 was isol;~tedin July in 1977 at 28'28' N , 13618' E. in the Northwestern Pacific Ocean dusing the KH77-2 cruise of R/V Iftrkrrho-Morrr (Ocean Research Institute, University of Tokyo). This strain was identified as P.serrt/orrro~rcr.ssp. according to the scheme of Siniidu (1974). P.sercc1o1rro1rtr.s108 was prec~lltul-edin Ili strength of ZoBell's 2216E medi~~ni (Oppenheinier and ZoBell 1952) for 20 h. centrifuged, washed twice with sterile 1.5%. NnCI solution. and inocul~~ted either directly into the culture medium or into the hynthetic salt niixturc (Novitsky and Morita 1976). Cells WCIT kept under starved conditions in this mixture for4 weeksat 20°C before expel.iment;ll use. Gron~tlrC'o1rc1itio11.s For the experimental culture. age!etl seawater was filterecl thl.ough 0.2-pm pore size Nuclepore filters. autoclaved at 121°C for 15min. and enriched with yeast extract (YE) (Difco) and nalidixic acid (NA) (Sigma) :isepticolly. NA was dissolved in before 0.05 N NnOH solution and filter-sterilized ininiedi>~tely use. After the inoculation of the culture, duplicates of200mL

0008-4 166/79/030415-061i;O1.0010 a 1 9 7 9 N:~tionnlResearch Council of Canadu/Conseil national de recherche5 du Canada

416

C A N . J . MICROBIOL. VOL. 25. 1979

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

enriched seawater medium were incuhk~teclin 300mL Erlenrnevel. flasks with cotton p l ~ ~ pat s ,2VC for 7 h.

I l c ~ / o ~ r r r i r r t r i i o , (!/' r Direc,/ Cortrrc f I1k")

(!/' Viohlc Btrc~rr~.itrl C~ll.~

For rhe determinarion of DVC, duplicate I(M)-lnL seawater D t ~ ~ o ~ ~ ~ ~t~j'Boc~~er~itrl i i ~ r o ~ i oNrrr~rht~r. ~r samples were enriched with 0.025% ( W / V ) Y E :inel 0.002% B;rclerial growth was followed hy the spre;rcl plate methocl on ( W / V ) N A , and incuh:~tecl in dnl-kness in 250-1111>glass bottles PPES-I1 medium (.raga 1968) ancl ;I clil-ect niicroscopic method. \s with cotton plugs ;it 20°C. A f t e r 6 h o f incubation. ~ ~ n l cotherColonies on cluplic;~teplates were co~rnteclafter 3 days' incubawise statecl, the D V C in the cultureel seawater were determineel tion at 2O"C. Direct counts were obtained sing the e p i f l ~ ~ o r - by the epifluol.escent technique. Only those p;~rticlesthat were escent microscopic method (Hohhie 01 (11. 1977). After 21 preelong;rted 01'fattened to the size ancl shape of freshly culturetl clete~.rninedincubation pe~.iod,a portion of culture nieclium was cells. and that Ruo~.escedreddish orange. were counted. Countfisetl with fol-malin (final concentlxtion 2.0Si). The cells were ing~ were performeel within 5 min after prcpa~.ntion,Before the then fillel-eel onto a 0.2-prn pore size Nuclepol-e filter. The lilter determination o f DVC. the corresponcling T D C s;~mple was wasstained with:rcrieline orange (AO)(Mel.ck. 0.01%) for3 niin. obse~.vecl. I f there were non-hacte~.ialorange-fl~~orescent partiThe filter had previously been so;~kedin 0.2% Nig~.osinsolution cles in the seaw:rte~.. those ~iumherswere counteel and suhfor 10 to20h fo~.obtainingdarker hackground un~lelthe fluorestracteel as a blank from D V C n~~rnbe~.s. cent microscope. After w;~shingwith clistillecl water. the damp filter w;is placed hetweeii a microscope slide ancl a coverslip Results using immel.sion oil (Nikon). All the reagents ( formalin. AO. and elistilled water) ~~secl had p~.eviouslybeen filtel.ed through0.2-[~m Llr Doi.trtoi;~5tri~lie.s pore size Nuclepore filter to eliminate the suspendeel pal.ticlcs. &ff~)c.t of N A 0 1 1 Btrc.toricr1G~.o\~ttll ill E.rpo/le/rtirll A Nikon fluorescent microscope with an ultr;i-high mercury Pl11rsc. I;uiip w a j ~ ~ s efor c l the observiition o f the prep;~t.;~tionsat x 1000 Actively growing bacterial cells were inoculated m;~gnification.B-B excitation filtel-s ancl 21 Y-SON F ha~.rie~. filter we!-e usecl. The numbel. o f b>rcte~.ia pel- rnillilitre were estimated into seawater medi~imenriched with 0.025% YE l l y than 300cells. All from :Icount ofiit least 200 cells, ~ ~ s u ; ~more and various concentrations of NA. Twenty or pal-ticles were counted as total direct counts the b;~cte~.i;~-like thirty milligrams/L NA (0.002% or 0.003%) inhib(TDC). Those cells elongated or enlarged to the size o f freshly ited bacterial division such that the total direct cultul-ed bactel-ia were counted and designateel ;IS direct counts i : ~ l ( D V C ) . Blank tests were irlso carried out o f viable b ~ ~ c t e r cells counts did not increase (Fig. 2B), and plate counts without the sample se;lwater. decreased m:u-kedly (Fig. 2A). At I0 mg/L NA. the Fieltl Sirtt1ic.s Sctr n,olt,r Strr,rplirrg.s Seaw;itcrsarnplings were made in December, 1977. at stations in or near the Kuroshio Ci11.1.entduring the KH-77-4 cruise o f R/V Htrklrlro-Mtrrrc (Fig. I).Samples were collected with sterilizeel J-Z type O R l T samplers (Taga 1968) or sterilized glklss bottles for s~rrfilcelayers. All the microhiologic;~l treatments were done within 1 h on hoard. 11c~lt~1~rrrir~trlit111 t~/'Pltrlc Corrrrl (PC) t r r ~ t l7i110l Iliroc~lCorrrrl (71)C) For the enumeration o f heterotrophic h~lcteria,appropriate amounts (1-50mL) o f duplicate seawater stlmples were filtered through 0.2-pm pore size Nuclepore filters. The inoculated filters were put on PPES-I1 agar plates ancl then incubated at 20°C for3 weeks before countingcolonies. T D C was determined by the srme epifluorescent technique 21s rnentioncd above. All the bacteria-like particles which have clear margins and greenish white or orange fluorescence were counted. At least 400 cells were counted for each preparation.

total direct count gradually increased, which indicates that this concentration was insufficient for the complete inhibition of bacterial tlivisions. Cell elongation during the incubation period was also determined with at least 20 cells (Fig. 3). In the presence of20 mg/L NA and aftel-7 hof incubation, ~ ttimes the length of those the cells reached a b o ~ 10 without NA. The addition of 20 mg/L of N A suppressed bacteI-ial division despite varying the concentration of YEfl-om 0.0002 to0.025% (data not shown). During the course of incubation, all the bacterial cells counted as TDC fluoresced reddish orange.

121 Pacific Ocean

5

0 Time th) FIG. 1. Sampling locations during KH-77-4 cruise of RIV Htrklrllo-Mtrrlr.

0 Time

5 th)

FIG. 2. Growth o f P.~c.rrtlor,lot~trs108 with various concentrations of nalidixic acid. ( A ) PC, (B) TDC.

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

KOGURE

0

5 Time t h )

FIG.3 Change in cell length of P\errt/oti~ot~tr( 108 during the of incutx~t~on. Clo\ed circle\: with 0.002% (20 rngll.) nnlldixic ncld; open circle\: wltho~ltnalldlx~c;~cid.

caul \e

Efic.r of N A otl rlre Gro~t>rlr oJ'Stnt.oerl Brrcrerin Bacterial cells that had been kept ina salt mixt~11.e for 4 weeks were inoculated into the seawater medium enriched with 0.025% Y E and 0.002% (20mgIL) NA (Fig. 4). Through the incubation period (Fig. 4), the plate counts were about 15% of direct counts. During the lag phase, which continued for 5 h, the direct count and plate count neither increased nor decreased, regardless of the presence of NA. This indicates that it is not until the beginning of exponential growth phase that the bactericidal action of NA emerges and the viability decreases. In the PI esence of NA, the direct counts remained constant during the incubation period. After 5 h of incubation, some of the cells greatly enlarged and fluoresced reddish orange. These appeared to be living bacterial cells, whereas the remainder did not show any morphological changes and fluoresced greenish white. The latter were t h o ~ ~ gto h t be dead cells. o r at leajt those unable to recover their viability under the present culture condition. At time 0, the mean size of the starved bacteria wa5 0.61tni and aftel- 5 h, the size of elongated cell5 wa5 3 01.4pni. The ~.atiosof the enlarged living cells (DVC) to total direct count (TDC) are 4hown in Fig. 5. Although the enlarged cells increased with incubation period, the difference between the presence or absence of NA i5 clear. In the presence of NA, the number of enlarged cell5 became constant at 5 h. and their ratio to TDC did not exceed one-third. Without NA, the vigorous bacterial fissions were reflected in the con5tant increase in the ratio. The above result\ \bowed that after- 4 week5 5ta1vat ion, 33% of TDC col-responds to DVC and 15% to PC.

F I G .4. C~.owlhof stal-vecl P.serrtlot~roirrr.s108. Ciscleh: with 0.002% (?Omg/L) nalidixic acid; triangles: without nalidixic acid.

801

0

5 Time ( h )

FIG.5 . K:~tioofDVC to total direct count during the cousse of 108. Closed circles: with O.OO?%> incubation of P.ct~rctlo~~ro/ro.v nalidixic acid: open circle\: without nalidixic acid.

h-ic~ldsrrrrtic.\ lZf7i.c.r (!I' N A otl Bac.rcria1 Gt.o~~,rll it1 N t r t r l t ~ ~ l Sccr\~wter Surface water collected at Station P (Fig. 1) was incubated up to 1 1 h and PC and DVC in the water were determined during the course of the incubation (Fig. 6). With the addition of 0.002% NA. the cell divisions wer-e suppressed at least up to 5 h. This suggests that NA may also be effective on natural heterogeneous bacterial populations. After 5 h of incubation, the bacterial cells which were counted as DVC swelled to about 1 pni and

C A N . J . MICROBIOL. VOL. 25. 1979

Bacteria

0

L o g . No. / M L )

(

3

2

1

5

4

L

A

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

i

t DV C

TDC d

[ ,;,/ ;', /'

,/---

,

0

p ;

5

1I m e

1

1

I

2

,

3

4

5

I

I

1

B

,,---i(Y

i 32

0

,

,

50

10

(h)

FIL 6. G ~ o w t hof h ' t c t e ~ ~Ina n n t u ~ a l\earv,ttel. C ~ ~ c l ewith \ 0.002% nCilidivlc'~clcl;t~ angle\. wlthout nulid~\ic,~cld.

~1

I

TDC

200

I

1 '

TDC

FIG.8. Vertical plufiles of bacteria. (A) Station 153. ( B ) Station 49. (C) Station 121.

fluol-esced reddish orange. Thl-ee hours' incubation was insufficient for clear differential counting of fattened cells. Unclel- the growth conditions used, 5 or 6 h of incubation was best for the determination of DVC. Vertic,nl Profiles of Btrctericr ill Operz Ocerirl

Time ( h FIG.7. DVC changes during the course of seawater incubations collected at Station 153. Closed circles: O m ; open circles: I0 rn: squares: jOrn; closed triangles: 100 rn; open triangles: 200 m.

At Station 153, the seawater samples collected at 0, 10, 50, 100, and 200 m depth were incubated for 8 h and DVC were followed (Fig. 7). The differences between DVC values after 5 and 6h of incubation were small. Although either incubation time could be used, the latter was chosen to measure DVC in natural seawater, since the enlargement of the cells at 6 h was clearer than at 5 h. Figure 8A, B, and C show the vertical profiles of PC, DVC, and TDC at Stations 153, 49, and 121, I-espectively. PC values were roughly 0.1% of DVC, which were

419

KOGURE ET A L .

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

about 5-10% of TDC. In natul-al seawater, all the bacteria counted as TDC were small in size (about 0.3 pin) and large cleat-ly living bacterial cells which fluoi-esced reddish orange were not detected.

Discussion The present ~'es~tltsshowed that the DVC niethod may provide a useful technique for counting bacterial numbers in natural seawaters. With this technique, only living cells can be detected, which was impossible by conventional direct microscopic method\. The procedure is I-elatively simple and the results can be obtained within a short period of time. In the label-atory experiments, Pserrtioinoi7cl~ 108 was sensitive to the bactericidal action of NA at a concentration of0.002% or mole, which led to the fol-niation of elongated filamentous cells. Goss et (11. (1964) described the same effect ofNA on E. coli and further observed that NA was lethal only for proliferating cells. Deitz el (11. ( 1966) stated that protein and ribonucleic acid synthesis were PI-erequisites for the bactel-icidal action of NA. These observations are consistent with the fact that bactericidal action of NA on P J P I I ( / ~ I ? ~ 108 O I ~be(IJ came apparent after the beginning of the exponential growth phase. These charactel-istics of NA favout- the present technique. The growth of natut al bacterial population, however, could not be completely suppressed by NA. Even with a highel-concentration of NA, it wa\ also impossible to inhibit the bacterial division (data not shown). This must be due to growth of NAI esistant bacteria. The role of NA in this technique is to retard the beginning of the exponential growth phase for at least 6 h and avoid the overestimation of living cells. The incubation pl.ocedure of seawater samples, couplecl with the use of the epifluol-escence technique with acl idine orange staining, greatly eased the discl-imination of living cells from other particles. Several investigators have reported the presence of many small. free-living, coccoid bacteria in natural seawater (Daley and Hobbie 1975; Watson et (11. 1977; Zirnmermann ancl Meyer-Reil 1974). Most of them fluoresced greenish white, whereas the cultured cells fluoresced reddish orange. Hobbie et (11. (1977) have suggested that this may be the I-esultof interaction between cellula~-RNA and acridine orange. If so, this difference in fluorescence colour makes it easier to count only living cell5 as DVC. Just after the A 0 staining, all the swollen bactet-i'~Icells fluoresced reddish orange, but a part of non-swollen particles sometimes aluo fluoresced

reddish orange. Longer staining time or higher A 0 concentration often resulted in such non-soecific orange fl~lorescence.Those pat-ticles which did not show cleat- bacterial morphology were not counted as DVC. Once the prepat-ations were exposed to near ultraviolet radiation, the reddish-orange colour began to fade, and aftel-that only greenish white fluol-escence remained. As fol. the large swollen cells, the reddish-orange fluorescence lasted longer than that of non-swollen small particles. Significant differences were seen bet ween TDC, DVC, ancl PC values after4 weeks' starvation and still greatel- differences were found with natural seawater samples. The differences between TDC and DVC could be mostly asct-ibetl to dead organisms or non-living particles. T o confirm this assumption. further experiments with various antibnctet-ial acents and under different conditions of incubation will be necessary. There may be other better antibacterial agents or their appropriate combinations that effectivelv inhibit cell division. Further investigations on nutrient conditions which favour the growth of more bacterial cells will be also required. Particular emphasis should be given to the concentl.ation of nutrients with the view to the prevalence of oligotl.ophic bacterial populations in the open sea. While all the par-ticles which did not enlarge during the incubation period under the present expel-imental condition may not necessarily be dead organisms, the elongated cells were obviously living bacterial cells. The met hod is thus PI-obablya minimum estimate of viable cell numbers. Nevertheless the number of living bacteria counted with this method was f a - greater than any other previous method of counting living bacteria in the sea. Microscopic observation clal.ities some aspects of bacterial life in natural seawaters. Most cells counted as TDC were small coccoid forms, about 0.3pm in cliarneter. On the other hand, most cells counted as DVC were free-living; about 70% of were still them were rod-shaped, but the ~.eniaindetcoccoid. It is not certain whether these cells will become rod-shaped after longer incubation. These coccoitl cells tended to make clumps. On the other hand, most of detrital particles did not contain detectable bacterial cells on the surfaces. However, flakes (Gordon 1970) were often found to have some bacterial cells attached on the surface. As a consequence, this counting technique (DVC) may prove to be very useful and valuable as a new counting method. Further impt-ovementsand applications to various environments will be necessary in the future.

-

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

420

C A N . J . MICROBIOL. VOL. 2 5 , 1979

Acknowledgment Grateful acknowletlgnient is expressed to Dr. R. Y . Morita, Department of Miclubiology and School of Oceanography, Oregon State University, for kind rentling and criticizing of this manuscript. Gratitude is clue to Dr. T . Kume, Ocean Research Institute, University of Tokyo, for his suggestion and encouragenient for the study. We also thank the officers and crew of R/V HrrXnIzo-Mtr1.11for help in collecting and treating seawater samples. DALEY. K. J.. and J . E. H O B B I E1975. . Direct count of :tqu>ttic bacteria by a modified epifluorescent technique. Lirnnol. Oceatiogr. 20: 875-88 1. 1 1 ~ 1 - I ZW. , H.. T. M. COOK.itnd W. A. GOSS.1966. Mechanism of action of nalidixic acid on E.vclreric.lritr coli. 111. Conditions requiretl for lethality. J . Bacteriol. 91: 768-773. GORDON, D. C . . JIG. 1970. A microscopic study of organic particles in the North Atlantic Ocean. Deep-Sea Kes. 17: 175-185. Goss. W. A,. W . H . DEITZ,and T. M. COOK.1964. Mechanism coli. J . Bacteriol. 88: of action of nalidixic acid on E.sclrc~~.iclricr 1112-1118. HOBBIE J ., E., R. J. DALLY,and S. JASPER. 1977. Use of Nuclepore filters for counting hactel-ia by fluorescence micr-oscopy. Appl. Environ. Microbiol. 33: 1225- 1228. JANNASCH. H. W.,itnd G. E. JONES.1959. Bacterial populations

in seawitter as determined by different method of enurnelxtion. Limnol. Oceanogr. 4: 128-139. N O V I . I S K J. Y , A.. and R. Y . M O R I - r ~1976. . Mo~.phological characterization of small cells resulting from nutrient starvation of a psychrophilic marine Vibrjo. Appl. Environ. Mic~.obiol.32: 617-622. O P P C N H E I ~ C. I E H.. R , and C. E. ZOBELL.1952. Thegrowth and viability of sixty-three species of marine b;tcte~.i:t a s influenced by hydrostatic pressure. J . Mar. Res. 11: 10-18. P O ~ I E K OL. Y .R.. ilnd R. E. J O H A N N E 1968. S. Occurrence and respiration of c~lt~~tplankton in the upper 500 meters of the ocean. Deep-Sea Res. 15: 381-391. S I ~ V I I DU.U 1974. , The taxonomy of marine bacteria. 111 Marine Microbiology. Etlilctl hy N. Tagt. Tokyo Univ. Press. pp. 45-65. TAGA.N. 1968. Some ecological aspects of marine bacteria in Ku~.oshioCurrcnt.Bull. Misaki Mar. Biol. Inst. Kyoto Univ. 12: 65-76. W,YISON.S. W., T. J . NOVI-I-SKY. H. L. Q U I N B Yand . F. W. V,zl.ols. 1977. Deter-mination of bacterial number and biomass in the marine environment. Appl. Environ. Micl-obiol. 53: 940-946. Wit.13~.W. J., i~ndL. K . POMEROY. 1972. Microorganisms and thcil- association with aggregates and detl.itus in the sea: a microcopic study. Mem. 1st. Ital. 1dr.obiol. Dott Marco d e Marchi Pallnnza Italy, 29(Sttppl.): 325-352. Z I M ~ I E R M AR., N and N , L. A. MEYER-REIL. 1974. Anew method for fluorescence staining of bacterial populations on membrane filters. Kiel. Meeresforsch. 30: 24-27.

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

This article has been cited by: 1. Minchul Yoon, Jong-il Choi, Masamichi Yamashita. 2013. Effect of gamma irradiation on hyperthermal composting microorganisms for feasible application in space. Advances in Space Research 51:9, 1800-1807. [CrossRef] 2. Xiao Xing-long, Tian Cong, Yu Yi-gang, Wu Hui. 2013. Detection of viable but nonculturable Escherichia coli O157:H7 using propidium monoazide treatments and qPCR. Canadian Journal of Microbiology 59:3, 157-163. [Abstract] [Full Text] [PDF] [PDF Plus] 3. Aina Charlotte Wennberg, Ingun Tryland, Øyvin Østensvik, Indira Secic, Marte Monshaugen, Helge Liltved. 2013. Effect of water treatment on the growth potential of Vibrio cholerae and Vibrio parahaemolyticus in seawater. Marine Environmental Research 83, 10-15. [CrossRef] 4. Adrien Ducret, Sam Dukan. 2013. Single-cell analysis of cell viability after a biocide treatment unveils an absence of positive correlation between two commonly used viability markers. MicrobiologyOpen 2:1, 123-129. [CrossRef] 5. Ramesh Subramani, William Aalbersberg. 2012. Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiological Research 167:10, 571-580. [CrossRef] 6. Charlotte D. Smith, Sharon G. Berk, Maria T. Brandl, Lee W. Riley. 2012. Survival characteristics of diarrheagenic Escherichia coli pathotypes and Helicobacter pylori during passage through the free-living ciliate, Tetrahymena sp. FEMS Microbiology Ecology 82:3, 574-583. [CrossRef] 7. Olivier Firmesse, Elisabeth Morelli, Sokchea Vann, Brigitte Carpentier. 2012. Monitoring of bacterial load in terms of culturable and non-culturable cells on new materials placed in a delicatessen serve over counter. International Journal of Food Microbiology 159:3, 179-185. [CrossRef] 8. L. M. Polyanskaya, K. E. Ivanov, D. G. Zvyagintsev. 2012. Fluctuations in the population density of Gram-negative bacteria in a chernozem in the course of a succession initiated by moistening and chitin and cellulose introduction. Eurasian Soil Science 45:10, 958-967. [CrossRef] 9. J. García-Hernández, Y. Moreno, C. Chuan, M. Hernández. 2012. In Vivo Study of the Survival of Lactobacillus delbruecki subsp. bulgaricus CECT 4005T and Streptococcus thermophilus CECT 801 by DVC-FISH after Consumption of Fermented Milk. Journal of Food Science 77:10, M593-M597. [CrossRef] 10. Yolanda Moreno, Javier Sánchez-Contreras, Rosa M. Montes, Jorge García-Hernández, Lorena Ballesteros, M. Antonia Ferrús. 2012. Detection and enumeration of viable Listeria monocytogenes cells from ready-to-eat and processed vegetable foods by culture and DVC-FISH. Food Control 27:2, 374-379. [CrossRef] 11. Elissa Khamisse, Olivier Firmesse, Souad Christieans, Danielle Chassaing, Brigitte Carpentier. 2012. Impact of cleaning and disinfection on the non-culturable and culturable bacterial loads of food-contact surfaces at a beef processing plant. International Journal of Food Microbiology 158:2, 163-168. [CrossRef] 12. Anwar Huq, Bradd J. Haley, Elisa Taviani, Arlene Chen, Nur A. Hasan, Rita R. ColwellDetection, Isolation, and Identification of Vibrio cholerae from the Environment . [CrossRef] 13. Bidyut R. Mohapatra, Myron T. La Duc. 2012. Rapid detection of viable Bacillus pumilus SAFR-032 encapsulated spores using novel propidium monoazide-linked fluorescence in situ hybridization. Journal of Microbiological Methods 90:1, 15-19. [CrossRef] 14. Petr Lukes, Jean-Louis Brisset, Bruce R. LockeBiological Effects of Electrical Discharge Plasma in Water and in Gas-Liquid Environments 309-352. [CrossRef] 15. Sucharit Basu Neogi, M. Sirajul Islam, G. Balakrish Nair, Shinji Yamasaki, Rubén J. Lara. 2012. Occurrence and distribution of plankton-associated and free-living toxigenic Vibrio cholerae in a tropical estuary of a cholera endemic zone. Wetlands Ecology and Management 20:3, 271-285. [CrossRef] 16. Christabelle E. G. Fernandes, Anindita Das, B. N. Nath, Daphne G. Faria, P. A. Loka Bharathi. 2012. Mixed response in bacterial and biochemical variables to simulated sand mining in placer-rich beach sediments, Ratnagiri, West coast of India. Environmental Monitoring and Assessment 184:5, 2677-2689. [CrossRef] 17. J. García-Hernández, Y. Moreno, C.M. Amorocho, M. Hernández. 2012. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Letters in Applied Microbiology 54:3, 247-254. [CrossRef] 18. Shiqi Ji, Rui Zhao, Qi Yin, Yuan Zhao, Chenguang Liu, Tian Xiao, Xiaohua Zhang. 2012. Gel microbead cultivation with a subenrichment procedure can yield better bacterial cultivability from a seawater sample than standard plating method. Journal of Ocean University of China 11:1, 45-51. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

19. Michael Stat, Andrew C. Baker, David G. Bourne, Adrienne M.S. Correa, Zac Forsman, Megan J. Huggett, Xavier Pochon, Derek Skillings, Robert J. Toonen, Madeleine J.H. van Oppen, Ruth D. GatesMolecular Delineation of Species in the Coral Holobiont 63, 1-65. [CrossRef] 20. Josef Troxler, Miroslav Svercel, Andreas Natsch, Marcello Zala, Christoph Keel, Yvan Moënne-Loccoz, Geneviève Défago. 2012. Persistence of a biocontrol Pseudomonas inoculant as high populations of culturable and non-culturable cells in 200-cm-deep soil profiles. Soil Biology and Biochemistry 44:1, 122-129. [CrossRef] 21. J. Garc��a-Hern��ndez, Y. Moreno, C.M. Amorocho, M. Hern��ndez. 2012. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.��bulgaricus and Streptococcus thermophilus. Letters in Applied Microbiology 54:3, 247. [CrossRef] 22. Yolanda Moreno, Lorena Ballesteros, Jorge García-Hernández, Paula Santiago, Ana González, M. Antonia Ferrús. 2011. Specific detection of viable Listeria monocytogenes in Spanish wastewater treatment plants by Fluorescent In Situ Hybridization and PCR. Water Research 45:15, 4634-4640. [CrossRef] 23. A. Mishra, N. Taneja, M. Sharma. 2011. Demonstration of viable but nonculturable Vibrio cholerae O1 in fresh water environment of India using ciprofloxacin DFA-DVC method. Letters in Applied Microbiology 53:1, 124-126. [CrossRef] 24. N. D. Romanova, A. F. Sazhin. 2011. Methodological aspects of the determination of the Bacterioplankton number, biomass, and production. Oceanology 51:3, 518-527. [CrossRef] 25. Norio Hasegawa, Shinsuke Yamasaki, Yasuko Horiguchi. 2011. A study of bacterial culturability during bioaerosol challenge test using a test chamber. Journal of Aerosol Science 42:6, 397-407. [CrossRef] 26. Kimberly J. Griffitt, Nicholas F. Noriea, Crystal N. Johnson, D. Jay Grimes. 2011. Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization. Journal of Microbiological Methods 85:2, 114-118. [CrossRef] 27. Henri Leclerc, Milton S. da CostaMicrobiology of Natural Mineral Waters 319-370. [CrossRef] 28. S. L. Bräuer, C. Adams, K. Kranzler, D. Murphy, M. Xu, P. Zuber, H. M. Simon, A. M. Baptista, B. M. Tebo. 2011. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River. Environmental Microbiology 13:3, 589-603. [CrossRef] 29. J. Baudart, A. Robyns, S. Peuchet, J.L. Drocourt, P. Lebaron. 2011. Sensitive counting of viable Enterobacteriaceae in seawaters and relationship with fecal indicators. Journal of Microbiological Methods 84:3, 482-485. [CrossRef] 30. Francesca Gotsch, Roberto Romero, Juan Pedro KusanovicIntrauterine Infection, Preterm Parturition, and the Fetal Inflammatory Response Syndrome 457-468.e6. [CrossRef] 31. Kim A.H. Hultin, Radovan Krejci, Jarone Pinhassi, Laura Gomez-Consarnau, E. Monica Mårtensson, Åke Hagström, E. Douglas Nilsson. 2011. Aerosol and bacterial emissions from Baltic Seawater. Atmospheric Research 99:1, 1-14. [CrossRef] 32. Salma Masmoudi, Michel Denis, Sami Maalej. 2010. Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature. Marine Pollution Bulletin 60:12, 2209-2214. [CrossRef] 33. Samuel Duodu, Duncan Colquhoun. 2010. Monitoring the survival of fish-pathogenic Francisella in water microcosms. FEMS Microbiology Ecology 74:3, 534-541. [CrossRef] 34. J. Baudart, P. Lebaron. 2010. Rapid detection of Escherichia coli in waters using fluorescent in situ hybridization, direct viable counting and solid phase cytometry. Journal of Applied Microbiology 109:4, 1253-1264. [CrossRef] 35. Ryoki Asano, Kenichi Otawa, Yuhei Ozutsumi,, Nozomi Yamamoto, Hosnia Swafy Abdel-Mohsein, Yutaka Nakai. 2010. Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure. Journal of Bioscience and Bioengineering 110:4, 419-425. [CrossRef] 36. Ian Joint, Martin Mühling, Joël Querellou. 2010. Culturing marine bacteria - an essential prerequisite for biodiscovery. Microbial Biotechnology 3:5, 564-575. [CrossRef] 37. Namiha Yamada, Nobuo Tsurushima, Masahiro Suzumura. 2010. Effects of seawater acidification by ocean CO2 sequestration on bathypelagic prokaryote activities. Journal of Oceanography 66:4, 571-580. [CrossRef] 38. Aleksandr S. Safatov, Galina A. Buryak, Irina S. Andreeva, Sergei E. Olkin, Irina K. Reznikova, Alexander N. Sergeev, Boris D. Belan, Mikhail V. PanchenkoAtmospheric Bioaerosols 407-454. [CrossRef] 39. Takehiko Kenzaka, Katsuji Tani, Masao Nasu. 2010. High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. The ISME Journal 4:5, 648-659. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

40. Satoshi Ishii, Kanako Tago, Keishi Senoo. 2010. Single-cell analysis and isolation for microbiology and biotechnology: methods and applications. Applied Microbiology and Biotechnology 86:5, 1281-1292. [CrossRef] 41. Taichi Yokokawa, Toshi Nagata. 2010. Linking bacterial community structure to carbon fluxes in marine environments. Journal of Oceanography 66:1, 1-12. [CrossRef] 42. Mario Díaz, Mónica Herrero, Luis A. García, Covadonga Quirós. 2010. Application of flow cytometry to industrial microbial bioprocesses. Biochemical Engineering Journal 48:3, 385-407. [CrossRef] 43. Emilie Lyautey, Stéphanie Boulêtreau, Erwann Y. Madigou, Frédéric Garabetian. 2010. Viability of differentiated epilithic bacterial communities in the River Garonne (SW France). Hydrobiologia 637:1, 207-218. [CrossRef] 44. Ãnder Ä°dil, ReÅit Ãzkanca, Cihan Darcan, Ken P. Flint. 2010. Escherichia coli: Dominance of Red Light over Other Visible Light Sources in Establishing Viable but Nonculturable State. Photochemistry and Photobiology 86:1, 104-109. [CrossRef] 45. G. Altug, M. Cardak, P.S. Ciftci, S. Gurun. 2010. The application of viable count procedures for measuring viable cells in the various marine environments. Journal of Applied Microbiology 108:1, 88-95. [CrossRef] 46. Roi Feingersch, Marcelino T Suzuki, Michael Shmoish, Itai Sharon, Gazalah Sabehi, Frédéric Partensky, Oded Béjà. 2010. Microbial community genomics in eastern Mediterranean Sea surface waters. The ISME Journal 4:1, 78-87. [CrossRef] 47. Naoaki Ashida, Satoshi Ishii, Sadakazu Hayano, Kanako Tago, Takashi Tsuji, Yoshitaka Yoshimura, Shigeto Otsuka, Keishi Senoo. 2010. Isolation of functional single cells from environments using a micromanipulator: application to study denitrifying bacteria. Applied Microbiology and Biotechnology 85:4, 1211-1217. [CrossRef] 48. L. Mezule, S. Tsyfansky, V. Yakushevich, T. Juhna. 2009. A simple technique for water disinfection with hydrodynamic cavitation: Effect on survival of Escherichia coli. Desalination 248:1-3, 152-159. [CrossRef] 49. V. G. Evtyugin, A. B. Margulis, L. G. Damshkaln, V. I. Lozinsky, A. I. Kolpakov, O. N. Ilinskaya. 2009. Sorption of microorganisms by wide-porous agarose cryogels containing grafted aliphatic chains of different length. Microbiology 78:5, 603-608. [CrossRef] 50. Chiou-Jour Lai, Shau-Yan Chen, I-Hsuan Lin, Chuan-Hsiung Chang, Hin-chung Wong. 2009. Change of protein profiles in the induction of the viable but nonculturable state of Vibrio parahaemolyticus. International Journal of Food Microbiology 135:2, 118-124. [CrossRef] 51. A.M. Zimmerman, D.M. Rebarchik, A.R. Flowers, J.L. Williams, D.J. Grimes. 2009. Escherichia coli detection using mTEC agar and fluorescent antibody direct viable counting on coastal recreational water samples. Letters in Applied Microbiology 49:4, 478-483. [CrossRef] 52. A. B. Margulis, A. V. Voloshin, A. Kh. Gil’mutdinov, A. I. Kolpakov, O. N. Ilinskaya. 2009. Alteration of bacterial cell activity results in element composition change. Doklady Biochemistry and Biophysics 427:1, 202-205. [CrossRef] 53. Karine Alain, Joël Querellou. 2009. Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:4, 583-594. [CrossRef] 54. Iori Imazaki, Kazuhiro Nakaho. 2009. Temperature-upshift-mediated revival from the sodium-pyruvate-recoverable viable but nonculturable state induced by low temperature in Ralstonia solanacearum: linear regression analysis. Journal of General Plant Pathology 75:3, 213-226. [CrossRef] 55. Baby Divya, Sheryl O. Fernandes, G. Sheelu, Shanta Nair, P.A. Loka Bharathi, D. Chandramohan. 2009. Limno-tolerant bacteria govern nitrate concentration in Mandovi Estuary, India. Estuarine, Coastal and Shelf Science 82:1, 29-34. [CrossRef] 56. Mayukh Das, Tushar Suvra Bhowmick, Ranjan K. Nandy, Gopinath B. Nair, Banwarilal L. Sarkar. 2009. Surveillance of vibriophages reveals their role as biomonitoring agents in Kolkata. FEMS Microbiology Ecology 67:3, 502-510. [CrossRef] 57. L. Zhong, J. Chen, X.-h. Zhang, Y.-a. Jiang. 2009. Entry of Vibrio cincinnatiensis into viable but nonculturable state and its resuscitation. Letters in Applied Microbiology 48:2, 247-252. [CrossRef] 58. Vinh D. Pham, Linda L. Hnatow, Shiping Zhang, Robert D. Fallon, Scott C. Jackson, Jean-Francois Tomb, Edward F. DeLong, Sharon J. Keeler. 2009. Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environmental Microbiology 11:1, 176-187. [CrossRef] 59. L. M. Polyanskaya, K. E. Ivanov, V. S. Guzev, D. G. Zvyagintsev. 2008. Estimation of abundance dynamics of gram-negative bacteria in soil. Microbiology 77:6, 760-764. [CrossRef] 60. B. Alvarez, M. M. Lopez, E. G. Biosca. 2008. Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental water microcosms. Microbiology 154:11, 3590-3598. [CrossRef] 61. G. Yu. Yakovleva, R. E. Davydov, B. M. Kurinenko. 2008. Induction of the unculturable state in Escherichia coli K12 with 2,4,6trinitrotoluene. Microbiology 77:5, 530-533. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

62. Akihiro Yoshida, Yuna Seo, Shuhei Suzuki, Tomohiko Nishino, Takeshi Kobayashi, Naoko Hamada-Sato, Kazuhiro Kogure, Chiaki Imada. 2008. Actinomycetal Community Structures in Seawater and Freshwater Examined by DGGE Analysis of 16S rRNA Gene Fragments. Marine Biotechnology 10:5, 554-563. [CrossRef] 63. Johanna Thelaus, Mats Forsman, Agneta Andersson. 2008. Role of Productivity and Protozoan Abundance for the Occurrence of Predation-resistant Bacteria in Aquatic Systems. Microbial Ecology 56:1, 18-28. [CrossRef] 64. Fengrong Sun, Jixiang Chen, Linhong Zhong, Xiao-hua Zhang, Rong Wang, Qianru Guo, Yi Dong. 2008. Characterization and virulence retention of viable but nonculturable Vibrio harveyi. FEMS Microbiology Ecology 64:1, 37-44. [CrossRef] 65. Sébastien Josset, Nicolas Keller, Marie-Claire Lett, Marc J. Ledoux, Valérie Keller. 2008. Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms. Chemical Society Reviews 37:4, 744. [CrossRef] 66. Robert E. Levin. 2007. Campylobacter jejuni : A Review of its Characteristics, Pathogenicity, Ecology, Distribution, Subspecies Characterization and Molecular Methods of Detection. Food Biotechnology 21:4, 271-347. [CrossRef] 67. Md. Sagir Ahmed ., Md. Raknuzzaman ., Hafeza Akther ., Sumaiya Ahmed .. 2007. The Role of Cyanobacteria Blooms in Cholera Epidemic in Bangladesh. Journal of Applied Sciences 7:13, 1785-1789. [CrossRef] 68. M. Alam, M. Sultana, G. B. Nair, A. K. Siddique, N. A. Hasan, R. B. Sack, D. A. Sack, K. U. Ahmed, A. Sadique, H. Watanabe, C. J. Grim, A. Huq, R. R. Colwell. 2007. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proceedings of the National Academy of Sciences 104:45, 17801-17806. [CrossRef] 69. N. Dreux, C. Albagnac, M. Federighi, F. Carlin, C.E. Morris, C. Nguyen-the. 2007. Viable but non-culturable Listeria monocytogenes on parsley leaves and absence of recovery to a culturable state. Journal of Applied Microbiology 103:4, 1272-1281. [CrossRef] 70. Amel Ben Kahla-Nakbi, Amine Besbes, Kamel Chaieb, Mahmoud Rouabhia, Amina Bakhrouf. 2007. Survival of Vibrio alginolyticus in seawater and retention of virulence of its starved cells. Marine Environmental Research 64:4, 469-478. [CrossRef] 71. Kazuhiko Miyanaga, Suguru Takano, Yuki Morono, Katsutoshi Hori, Hajime Unno, Yasunori Tanji. 2007. Optimization of distinction between viable and dead cells by fluorescent staining method and its application to bacterial consortia. Biochemical Engineering Journal 37:1, 56-61. [CrossRef] 72. Hong-Ki Park, Eun-Young Jung, Mi-Eun Jung, Jong-Moon Jung, Ki-Won Ji, Pyung-Jong Yu. 2007. Characteristics of Bacterial Community for Biological Activated Carbon(BAC) by Culturable and Unculturable Methods. Journal of Life Science 17:9, 1284-1289. [CrossRef] 73. Satoshi Okabe, Yoko Shimazu. 2007. Persistence of host-specific Bacteroides–Prevotella 16S rRNA genetic markers in environmental waters: effects of temperature and salinity. Applied Microbiology and Biotechnology 76:4, 935-944. [CrossRef] 74. Wei-Yang Bao, Jin-Long Yang, Cyril Glenn Satuito, Hitoshi Kitamura. 2007. Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: evidence for two chemical cues?. Marine Biology 152:3, 657-666. [CrossRef] 75. Meng Du, Jixiang Chen, Xiaohua Zhang, Aijuan Li, Yun Li. 2007. Characterization and resuscitation of viable but nonculturable Vibrio alginolyticus VIB283. Archives of Microbiology 188:3, 283-288. [CrossRef] 76. Gentoku NAKASE, Mitsuru EGUCHI. 2007. Analysis of bacterial communities in Nannochloropsis sp. cultures used for larval fish production. Fisheries Science 73:3, 543-549. [CrossRef] 77. François Coutard, Philippe Crassous, Mickaël Droguet, Eric Gobin, Rita R Colwell, Monique Pommepuy, Dominique HervioHeath. 2007. Recovery in culture of viable but nonculturable Vibrio parahaemolyticus: regrowth or resuscitation?. The ISME Journal 1:2, 111-120. [CrossRef] 78. John Whipps, J Alun W. Morgan, Johannes A. van VeenMethodological Approaches to the Study of Carbon Flow and the Associated Microbial Population Dynamics in the Rhizosphere 20072634, 371-399. [CrossRef] 79. Pierre Servais, Tamara Garcia-Armisen, Isabelle George, Gilles Billen. 2007. Fecal bacteria in the rivers of the Seine drainage network (France): Sources, fate and modelling. Science of The Total Environment 375:1-3, 152-167. [CrossRef] 80. Saipin Chaiyanan, Sitthipan Chaiyanan, Christopher Grim, Timothy Maugel, Anwar Huq, Rita R. Colwell. 2007. Ultrastructure of coccoid viable but non-culturable Vibrio cholerae. Environmental Microbiology 9:2, 393-402. [CrossRef] 81. Eriko Kamiya, Shinji Izumiyama, Masahiko Nishimura, James G. Mitchell, Kazuhiro Kogure. 2007. Effects of fixation and storage on flow cytometric analysis of marine bacteria. Journal of Oceanography 63:1, 101-112. [CrossRef] 82. Wei-Yang Bao, Cyril Glenn Satuito, Jin-Long Yang, Hitoshi Kitamura. 2006. Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis in response to biofilms. Marine Biology 150:4, 565-574. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

83. Takuji Nakashima, Yousuke Miyazaki, Yukihiko Matsuyama, Wataru Muraoka, Kenichi Yamaguchi, Tatsuya Oda. 2006. Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium. Applied Microbiology and Biotechnology 73:3, 684-690. [CrossRef] 84. Kenichi Otawa, Ryoki Asano, Yasuhiko Ohba, Takako Sasaki, Eisuke Kawamura, Futoshi Koyama, Sakujiro Nakamura, Yutaka Nakai. 2006. Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment. Environmental Microbiology 8:11, 1985-1996. [CrossRef] 85. A. Jolivet-Gougeon, F. Sauvager, M. Bonnaure-Mallet, R.R. Colwell, M. Cormier. 2006. Virulence of viable but nonculturable S. Typhimurium LT2 after peracetic acid treatment. International Journal of Food Microbiology 112:2, 147-152. [CrossRef] 86. S. H. Na, K. Miyanaga, H. Unno, Y. Tanji. 2006. The survival response of Escherichia coli K12 in a natural environment. Applied Microbiology and Biotechnology 72:2, 386-392. [CrossRef] 87. Anwar Huq, Christopher Grim, Rita R. Colwell, G. Balakrish NairDetection, Isolation, and Identification of Vibrio cholerae from the Environment . [CrossRef] 88. S. Dutil, S. Tessier, M. Veillette, C. Laflamme, A. Meriaux, A. Leduc, J. Barbeau, C. Duchaine. 2006. Detection of Legionella spp. by fluorescent in situ hybridization in dental unit waterlines. Journal of Applied Microbiology 100:5, 955-963. [CrossRef] 89. Patricia Piqueres, Yolanda Moreno, Jose L. Alonso, Maria A. Ferrús. 2006. A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Research in Microbiology 157:4, 345-349. [CrossRef] 90. M. Ritz, M.F. Pilet, F. Jugiau, F. Rama, M. Federighi. 2006. Inactivation of Salmonella Typhimurium and Listeria monocytogenes using high-pressure treatments: destruction or sublethal stress?. Letters in Applied Microbiology 42:4, 357-362. [CrossRef] 91. Patrick K. Jjemba, Brian K. Kinkle, Jodi R. Shann. 2006. In-situ enumeration and probing of pyrene-degrading soil bacteria. FEMS Microbiology Ecology 55:2, 287-298. [CrossRef] 92. Michinari Sunamura, Akihiko Maruyama. 2006. A digital imaging procedure for seven-probe-labeling FISH (Rainbow-FISH) and its application to estuarine microbial communities. FEMS Microbiology Ecology 55:1, 159-166. [CrossRef] 93. Olga Savichtcheva, Noriko Okayama, Tsukasa Ito, Satoshi Okabe. 2005. Application of a direct fluorescence-based live/dead staining combined with fluorescence in situ hybridization for assessment of survival rate ofBacteroides spp. in drinking water. Biotechnology and Bioengineering 92:3, 356-363. [CrossRef] 94. L.A. Bjergbaek, P. Roslev. 2005. Formation of nonculturable Escherichia coli in drinking water. Journal of Applied Microbiology 99:5, 1090-1098. [CrossRef] 95. Maria del Mar Lleò, Barbara Bonato, Dennis Benedetti, Pietro Canepari. 2005. Survival of enterococcal species in aquatic environments. FEMS Microbiology Ecology 54:2, 189-196. [CrossRef] 96. Urumu Tsunogai, Fumiko Nakagawa, Toshitaka Gamo, Junichiro Ishibashi. 2005. Stable isotopic compositions of methane and carbon monoxide in the Suiyo hydrothermal plume, Izu–Bonin arc: Tracers for microbial consumption/production. Earth and Planetary Science Letters 237:3-4, 326-340. [CrossRef] 97. Monier, Maria BrandlMethods in Microscopy for the Visualization of Bacteria and Their Behavior on Plants 595-619. [CrossRef] 98. M. Ogawa, K. Tani, A. Ochiai, N. Yamaguchi, M. Nasu. 2005. Multicolour digital image analysis system for identification of bacteria and concurrent assessment of their respiratory activity. Journal of Applied Microbiology 98:5, 1101-1106. [CrossRef] 99. F. Coutard, M. Pommepuy, S. Loaec, D. Hervio-Heath. 2005. mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state. Journal of Applied Microbiology 98:4, 951-961. [CrossRef] 100. T. Garcia-Armisen, P. Lebaron, P. Servais. 2005. beta-d-glucuronidase activity assay to assess viable Escherichia coli abundance in freshwaters. Letters in Applied Microbiology 40:4, 278-282. [CrossRef] 101. Julia Baudart, Amandine Olaizola, Josée Coallier, Vincent Gauthier, Patrick Laurent. 2005. Assessment of a new technique combining a viability test, whole-cell hybridization and laser-scanning cytometry for the direct counting of viable Enterobacteriaceae cells in drinking water. FEMS Microbiology Letters 243:2, 405-409. [CrossRef] 102. D. Zampino, R. Zaccone, R. La Ferla. 2004. Determination of living and active bacterioplankton: a comparison of methods. Chemistry and Ecology 20:6, 411-422. [CrossRef] 103. Ninwe Maraha, Agneta Backman, Janet K. Jansson. 2004. Monitoring physiological status of GFP-tagged Pseudomonas fluorescens SBW25 under different nutrient conditions and in soil by flow cytometry. FEMS Microbiology Ecology 51:1, 123-132. [CrossRef] 104. Mi-Sook Moon, Dong-Hun Lee, Chi-Kyung Kim. 2004. Identification of thebphC gene formeta-cleavage of aromatic pollutants from a metagenomic library derived from lake waters. Biotechnology and Bioprocess Engineering 9:5, 393-399. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

105. S. Maalej, R. Gdoura, S. Dukan, A. Hammami, A. Bouain. 2004. Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila exposed to natural seawater at low temperature. Journal of Applied Microbiology 97:3, 557-565. [CrossRef] 106. Tamara Garcia-Armisen, Pierre Servais. 2004. Enumeration of viable E. coli in rivers and wastewaters by fluorescent in situ hybridization. Journal of Microbiological Methods 58:2, 269-279. [CrossRef] 107. Ana I. Gil, Valerie R. Louis, Irma N. G. Rivera, Erin Lipp, Anwar Huq, Claudio F. Lanata, David N. Taylor, Estelle RussekCohen, Nipa Choopun, R. Bradley Sack, Rita R. Colwell. 2004. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environmental Microbiology 6:7, 699-706. [CrossRef] 108. Nadia-Valérie Quéric, Thomas Soltwedel, Wolf E Arntz. 2004. Application of a rapid direct viable count method to deep-sea sediment bacteria. Journal of Microbiological Methods 57:3, 351-367. [CrossRef] 109. Stephen T. Bunker, Tonya C. Bates, James D. Oliver. 2004. Effects of temperature on detection of plasmid or chromosomally encoded gfp - and lux- labeled Pseudomonas fluorescens in soil. Environmental Biosafety Research 3:2, 83-90. [CrossRef] 110. Ester Marco-Noales, Elena G. Biosca, Carmen Rojo, Carmen Amaro. 2004. Influence of aquatic microbiota on the survival in water of the human and eel pathogen Vibrio vulnificus serovar E. Environmental Microbiology 6:4, 364-376. [CrossRef] 111. Anthony Tolomei, Chris Burke, Bradley Crear, Jeremy Carson. 2004. Bacterial decontamination of on-grown Artemia. Aquaculture 232:1-4, 357-371. [CrossRef] 112. Naoko Yoshida, Akira Hiraishi. 2004. An Improved Redox Dye-Staining Method Using 5-Cyano-2,3-Ditoryl Tetrazolium Chloride for Detection of Metabolically Active Bacteria in Activated Sludge. Microbes and Environments 19:1, 61-70. [CrossRef] 113. Maria Elena Martinez Perez, Miroslav Macek, Maria Teresa Castro Galvan. 2004. In situ measured elimination of Vibrio cholerae from brackish water. Tropical Medicine and International Health 9:1, 133-140. [CrossRef] 114. Tomoko Maruyama, Kenji Kato, Ho-Dong Park. 2004. Population Dynamics of Free-Living Bacteria Related to the MicrocystinDegrading Strain Y2 in Lake Suwa and in Microcystin Amended Enrichments. Microbes and Environments 19:2, 137-146. [CrossRef] 115. Marzia Boaretti, Maria del Mar Lleo, Barbara Bonato, Caterina Signoretto, Pietro Canepari. 2003. Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environmental Microbiology 5:10, 986-996. [CrossRef] 116. Gérald Grégori, Michel Denis, Dominique Lefèvre, Jean-Claude Romano. 2003. Viabilité des bactéries hétérotrophes dans la baie de Marseille. Comptes Rendus Biologies 326:8, 739-750. [CrossRef] 117. M. Ogawa, K. Tani, N. Yamaguchi, M. Nasu. 2003. Development of multicolour digital image analysis system to enumerate actively respiring bacteria in natural river water. Journal of Applied Microbiology 95:1, 120-128. [CrossRef] 118. Andrea Villarino, Marie-Noelle Rager, Patrick A. D. Grimont, Odile M. M. Bouvet. 2003. Are UV-induced nonculturable Escherichia coli K-12 cells alive or dead?. European Journal of Biochemistry 270:12, 2689-2695. [CrossRef] 119. J.T. Keer, L. Birch. 2003. Molecular methods for the assessment of bacterial viability. Journal of Microbiological Methods 53:2, 175-183. [CrossRef] 120. Leo Van Overbeek, Dick Van ElsasGenetically Modified Microorganisms (GMM) in Soil Environments . [CrossRef] 121. Thomas Nystr�m. 2003. Nonculturable bacteria: programmed survival forms or cells at death's door?. BioEssays 25:3, 204-211. [CrossRef] 122. Ruben Araya, Katsuji Tani, Tatsuya Takagi, Nobuyasu Yamaguchi, Masao Nasu. 2003. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiology Ecology 43:1, 111-119. [CrossRef] 123. Fabio Mascher, Ursula Schnider-Keel, Dieter Haas, Genevieve Defago, Yvan Moenne-Loccoz. 2003. Persistence and cell culturability of biocontrol strain Pseudomonas fluorescens CHA0 under plough pan conditions in soil and influence of the anaerobic regulator gene anr. Environmental Microbiology 5:2, 103-115. [CrossRef] 124. G��rald Gr��gori, Michel Denis, Sergio Seorbati, Sandra CitterioResolution of Viable and Membrane-Compromised Free Bacteria in Aquatic Environments by Flow Cytometry . [CrossRef] 125. Arthur L. KochViable but not Culturable (VBNC) Microorganisms . [CrossRef] 126. Daniel Deere, Graham Vesey, Mark Gauci, Nicholas AshboltFlow Cytometry and Cell Sorting for Monitoring Microbial Cells . [CrossRef] 127. Leo Van Overbeek, Dick Van ElsasGenetically Modified Microorganisms (GMM) in Soil Environments . [CrossRef] 128. Thomas R. Neu, John R. LawrenceLaser Scanning Microscopy in Combination with Fluorescence Techniques for Biofilm Study . [CrossRef]

129. Penny S. Amy, Dana L. HaldemanNuclear Waste Respository in Yucca Mountain: Microbiological Aspects . [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

130. James K. FredricksonSubsurface Microorganisms: Ecological significance . [CrossRef] 131. Werner Manz, Ulrich Szewzyk, John R. LawrenceBiofilms in Natural and Drinking Water Systems . [CrossRef] 132. Anwar Huq, Erin Lipp, Rita ColwellCholera . [CrossRef] 133. Laura G. LeffStream Microbiology . [CrossRef] 134. Galina V. Mukamolova, Arseny S. Kaprelyants, Douglas B. Kell, Michael YoungAdoption of the transiently non-culturable state — a bacterial survival strategy? 47, 65-129. [CrossRef] 135. Véronique Créach, Anne-Claire Baudoux, Georges Bertru, Bertrand Le Rouzic. 2003. Direct estimate of active bacteria: CTC use and limitations. Journal of Microbiological Methods 52:1, 19-28. [CrossRef] 136. P.J. Stephens, B.M. MackeyChapter 2 Recovery of stressed microorganisms 37, 25-48. [CrossRef] 137. J. Li, G.L. Kolling, K.R. Matthews, M.L. Chikindas. 2003. Cold and carbon dioxide used as multi-hurdle preservation do not induce appearance of viable but non-culturable Listeria monocytogenes. Journal of Applied Microbiology 94:1, 48-53. [CrossRef] 138. Howard Kator, Martha RhodesDetection, enumeration and identification of environmental microorganisms of public health significance 113-144. [CrossRef] 139. Yoshiteru Aoi. 2002. In situ identification of microorganisms in biofilm communities. Journal of Bioscience and Bioengineering 94:6, 552-556. [CrossRef] 140. Shinsuke Fujiwara. 2002. Extremophiles: Developments of their special functions and potential resources. Journal of Bioscience and Bioengineering 94:6, 518-525. [CrossRef] 141. Karine Lemarchand, Philippe Lebaron. 2002. Influence of mutation frequency on the persistence of Salmonella enterica serotypes in natural waters. FEMS Microbiology Ecology 41:2, 125-131. [CrossRef] 142. N. Ramaiah, J. Ravel, W.L. Straube, R.T. Hill, R.R. Colwell. 2002. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state. Journal of Applied Microbiology 93:1, 108-116. [CrossRef] 143. N Leonard, J.P Guiraud, E Gasset, J.P Cailleres, J.P Blancheton. 2002. Bacteria and nutrients—nitrogen and carbon—in a recirculating system for sea bass production. Aquacultural Engineering 26:2, 111-127. [CrossRef] 144. M.D. Johnston, M.H. Brown. 2002. An investigation into the changed physiological state of Vibrio bacteria as a survival mechanism in response to cold temperatures and studies on their sensitivity to heating and freezing. Journal of Applied Microbiology 92:6, 1066-1077. [CrossRef] 145. James O. McInerney, Marice Mullarkey, Martina E. Wernecke, Richard Powell. 2002. Bacteria and Archaea: Molecular techniques reveal astonishing diversity. Biodiversity 3:2, 3-10. [CrossRef] 146. Annie Rompré, Pierre Servais, Julia Baudart, Marie-Renée de-Roubin, Patrick Laurent. 2002. Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. Journal of Microbiological Methods 49:1, 31-54. [CrossRef] 147. Ishrat Sultana ., Rahman Md. Mizanur ., Shakhawat Hossain Bhuiyan ., Md. Majibur Rahman .. 2002. Survivality and Virulence of Shigella sonnei and Shigella boydii in Different Physico-Chemical Stress Conditions. Journal of Biological Sciences 2:3, 196-201. [CrossRef] 148. Carsten Hase, Yvan Moënne-Loccoz, Geneviève Défago. 2001. Survival and cell culturability of biocontrol Pseudomonas fluorescens CHA0 in lysimeter effluent water and utilization of a deleterious genetic modification to study the impact of the strain on numbers of resident culturable bacteria. FEMS Microbiology Ecology 37:3, 239-249. [CrossRef] 149. T. Katsuragi, Y. Tani. 2001. Single-Cell Sorting of Microorganisms by Flow or Slide-Based (Including Laser Scanning) Cytometry. Acta Biotechnologica 21:2, 99-115. [CrossRef] 150. C. Hase, J. Nievergelt, Y. Moenne-Loccoz, G. Defago. 2001. Survival of biocontrol Pseudomonas fluorescens CHA0 in lysimeter effluent water depends on time of the year and soil type. Journal of Applied Microbiology 90:4, 567-577. [CrossRef] 151. Pierre Servais, Hélène Agogué, Claude Courties, Fabien Joux, Philippe Lebaron. 2001. Are the actively respiring cells (CTC+) those responsible for bacterial production in aquatic environments?. FEMS Microbiology Ecology 35:2, 171-179. [CrossRef] 152. Min Seok Chae, Heidi Schraft. 2001. Cell viability of Listeria monocytogenes biofilms. Food Microbiology 18:1, 103-112. [CrossRef] 153. M. Habibur Rahman, Satoru Suzuki, Kenji Kawai. 2001. Formation of viable but non-culturable state (VBNC) of Aeromonas hydrophila and its virulence in goldfish, Carassius auratus. Microbiological Research 156:1, 103-106. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

154. Takehiko Kenzaka, Nobuyasu Yamaguchi, Benjaphorn Prapagdee, Eiichi Mikami, Masao Nasu. 2001. Bacterial Community Composition and Activity in Urban Rivers in Thailand and Malaysia. JOURNAL OF HEALTH SCIENCE 47:4, 353-361. [CrossRef] 155. Joseph F FrankMicrobial attachment to food and food contact surfaces 43, 319-370. [CrossRef] 156. Sitthipan Chaiyanan, Saipin Chaiyanan, Anwarul Huq, Timothy Maugel, Rita R. Colwell. 2001. Viability of the Nonculturable Vibrio cholerae O1 and O139. Systematic and Applied Microbiology 24:3, 331-341. [CrossRef] 157. Tomotada Iwamoto, Masao Nasu. 2001. Current bioremediation practice and perspective. Journal of Bioscience and Bioengineering 92:1, 1-8. [CrossRef] 158. Werner Manz, Michael Wagner, Sibylle Kalmbach[23] Assessment of metabolic potential of biofilm-associated bacteria 336, 265IN9. [CrossRef] 159. J. W. Bier, D. F. Splittstoesser, Mary Lou TortorelloMicroscopic Methods . [CrossRef] 160. C Bakermans, E.L Madsen. 2000. Use of substrate responsive-direct viable counts to visualize naphthalene degrading bacteria in a coal tar-contaminated groundwater microbial community. Journal of Microbiological Methods 43:2, 81-90. [CrossRef] 161. Jan Dirk van Elsas, Pieter Kastelein, Petra van Bekkum, Jean M. van der Wolf, Philippine M. de Vries, Leo S. van Overbeek. 2000. Survival of Ralstonia solanacearum Biovar 2, the Causative Agent of Potato Brown Rot, in Field and Microcosm Soils in Temperate Climates. Phytopathology 90:12, 1358-1366. [CrossRef] 162. Andrea Villarino, Odile M.M Bouvet, Beatrice Regnault, Sylvie Martin-Delautre, Patrick A.D Grimont. 2000. Exploring the frontier between life and death in Escherichia coli: evaluation of different viability markers in liveand heat- or UV-killed cells. Research in Microbiology 151:9, 755-768. [CrossRef] 163. U. Szewzyk, R. Szewzyk, W. Manz, K.-H. Schleifer. 2000. M ICROBIOLOGICAL S AFETY OF D RINKING W ATER. Annual Review of Microbiology 54:1, 81-127. [CrossRef] 164. R.J. Smith, S.C. Kehoe, K.G. McGuigan, M.R. Barer. 2000. Effects of simulated solar disinfection of water on infectivity of Salmonella typhimurium. Letters in Applied Microbiology 31:4, 284-288. [CrossRef] 165. J. Vives-Rego, P. Lebaron, G. Nebe-von Caron. 2000. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews 24:4, 429-448. [CrossRef] 166. E. Marco-Noales, E.G. Biosca, M. Milan, C. Amaro. 2000. An indirect immunofluorescent antibody technique for detection and enumeration of Vibrio vulnificus serovar E (biotype 2): delevopment and applications. Journal of Applied Microbiology 89:4, 599-606. [CrossRef] 167. Nagappa Ramaiah, Russell T. Hill, Jongsik Chun, Jacques Ravel, Maria H. Matte, William L. Straube, Rita R. Colwell. 2000. Use of a chiA probe for detection of chitinase genes in bacteria from the Chesapeake Bay1. FEMS Microbiology Ecology 34:1, 63-71. [CrossRef] 168. Béatrice Regnault, Sylvie Martin-Delautre, Monique Lejay-Collin, Martine Lefèvre, Patrick A.D. Grimont. 2000. Oligonucleotide probe for the visualization of Escherichiacoli/Escherichia fergusonii cells by in situ hybridization:specificity and potential applications. Research in Microbiology 151:7, 521-533. [CrossRef] 169. Annette Moter, Ulf B Göbel. 2000. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. Journal of Microbiological Methods 41:2, 85-112. [CrossRef] 170. V. Besnard, M. Federighi, J.M. Cappelier. 2000. Development of a direct viable count procedure for the investigation of VBNC state in Listeria monocytogenes. Letters in Applied Microbiology 31:1, 77-81. [CrossRef] 171. Nagappa Ramaiah, Jongsik Chun, Jacques Ravel, William L Straube, Russell T Hill, Rita R Colwell. 2000. Detection of luciferase gene sequences in nonluminescent bacteria from the Chesapeake Bay1. FEMS Microbiology Ecology 33:1, 27-34. [CrossRef] 172. Karen Bade, Werner Manz, Ulrich Szewzyk. 2000. Behavior of sulfate reducing bacteria under oligotrophic conditions and oxygen stress in particle-free systems related to drinking water. FEMS Microbiology Ecology 32:3, 215-223. [CrossRef] 173. N Leonard, J.P Blancheton, J.P Guiraud. 2000. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquacultural Engineering 22:1-2, 109-120. [CrossRef] 174. Anne JOLIVET-GOUGEON, Zohreh TAMANAI-SHACOORI, Monique POMMEPUY, Michel CORMIER. 2000. Étude de la capacité de toxicogenèse de la souche d’Escherichia coli H10407 introduite en eau de mer synthétique. Oceanologica Acta 23:2, 221-228. [CrossRef] 175. Béatrice Regnault, Sylvie Martin-Delautre, Patrick.A.D Grimont. 2000. Problems associated with the direct viable count procedure applied to gram-positive bacteria. International Journal of Food Microbiology 55:1-3, 281-284. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

176. Tomotada Iwamoto, Katsuji Tani, Kanji Nakamura, Yoshihiko Suzuki, Masayoshi Kitagawa, Masahiro Eguchi, Masao Nasu. 2000. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiology Ecology 32:2, 129-141. [CrossRef] 177. A Villarino, O Bouvet, B Regnault, S Delautre, P.A.D Grimont. 2000. Cellular activities in ultra-violet killed Escherichia coli. International Journal of Food Microbiology 55:1-3, 245-247. [CrossRef] 178. Mats Forsman, Eva W. Henningson, Eva Larsson, Thorsten Johansson, Gunnar Sandström. 2000. Francisella tularensis does not manifest virulence in viable but non-culturable state. FEMS Microbiology Ecology 31:3, 217-224. [CrossRef] 179. Audrey Caro, Patrice Got, Bernard Baleux. 1999. Physiological changes of Salmonella typhimurium cells under osmotic and starvation conditions by image analysis. FEMS Microbiology Letters 179:2, 265-273. [CrossRef] 180. James T. Staley, John J. Gosink. 1999. P OLES A PART : Biodiversity and Biogeography of Sea Ice Bacteria. Annual Review of Microbiology 53:1, 189-215. [CrossRef] 181. Lina Boulos, Michèle Prévost, Benoit Barbeau, Josée Coallier, Raymond Desjardins. 1999. LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods 37:1, 77-86. [CrossRef] 182. L. Fiksdal, I. Tryland. 1999. Effect of u.v. light irradiation, starvation and heat on Escherichia colibetabeta-D-galactosidase activity and other potential viability parameters. Journal of Applied Microbiology 87:1, 62-71. [CrossRef] 183. Jang-Cheon Cho, Sang-Jong Kim. 1999. Green fluorescent protein-based direct viable count to verify a viable but non-culturable state of Salmonella typhi in environmental samples. Journal of Microbiological Methods 36:3, 227-235. [CrossRef] 184. D. T. Reynolds, C. R. Fricker. 1999. Application of laser scanning for the rapid and automated detection of bacteria in water samples. Journal of Applied Microbiology 86:5, 785-795. [CrossRef] 185. K. Kurokawa, K. Tani, M. Ogawa, M. Nasu. 1999. Abundance and distribution of bacteria carrying sltII gene in natural river water. Letters in Applied Microbiology 28:5, 405-410. [CrossRef] 186. S. Guyard, P. Mary, C. Defives, J. P. Hornez. 1999. Enumeration and characterization of bacteria in mineral water by improved direct viable count method. Journal of Applied Microbiology 86:5, 841-850. [CrossRef] 187. Holger Rheims, Andreas Felske, Stephanie Seufert, Erko Stackebrandt. 1999. Molecular monitoring of an uncultured group of the class Actinobacteria in two terrestrial environments. Journal of Microbiological Methods 36:1-2, 65-75. [CrossRef] 188. I. Arana, P. Santorum, A. Muela, I. Barcina. 1999. Chlorination and ozonation of waste-water: comparative analysis of efficacy through the effect on Escherichia coli membranes. Journal of Applied Microbiology 86:5, 883-883. [CrossRef] 189. M. Kawai, N. Yamaguchi, M. Nasu. 1999. Rapid enumeration of physiologically active bacteria in purified water used in the pharmaceutical manufacturing process. Journal of Applied Microbiology 86:3, 496-504. [CrossRef] 190. C. Thomas, D. J. Hill, M. Mabey. 1999. Morphological changes of synchronized Campylobacter jejuni populations during growth in single phase liquid culture. Letters in Applied Microbiology 28:3, 194-198. [CrossRef] 191. Michael R. Barer, Colin R. HarwoodBacterial Viability and Culturability 41, 93-137. [CrossRef] 192. Jang-Cheon Cho, Sang-Jong Kim. 1999. Viable, but non-culturable, state of a green fluorescence protein-tagged environmental isolate of Salmonella typhi in groundwater and pond water. FEMS Microbiology Letters 170:1, 257-264. [CrossRef] 193. Werner Manz[5] In Situ analysis of microbial biofilms by rRNA-targeted oligonucleotide probing 310, 79-91. [CrossRef] 194. Barry H. PyleDIRECT EPIFLUORESCENT FILTER TECHNIQUES (DEFT) 527-530. [CrossRef] 195. C.D. Zook, Frank F. BustaTOTAL VIABLE COUNTS | Microscopy 2176-2180. [CrossRef] 196. M.S. Islam, Z. Rahim, M.J. Alam, S. Begum, S.M. Moniruzzaman, A. Umeda, K. Amako, M.J. Albert, R.B. Sack, A. Huq, R.R. Colwell. 1999. Association of Vibrio cholerae O1 with the cyanobacterium, Anabaena sp., elucidated by polymerase chain reaction and transmission electron microscopy. Transactions of the Royal Society of Tropical Medicine and Hygiene 93:1, 36-40. [CrossRef] 197. Peter Marsh, Nathan Z Morris, Elizabeth M.H Wellington. 1998. Quantitative molecular detection of Salmonella typhimurium in soil and demonstration of persistence of an active but non-culturable population. FEMS Microbiology Ecology 27:4, 351-363. [CrossRef] 198. Pedro Alvarez‐Ortiz, S H Gordon, R V Greene, S H Imam, R F Bard, T R Tosteson. 1998. Marine microbial aggregating macromolecules: Potential mediators of coastal carbon flux. Biofouling 13:3, 197-211. [CrossRef] 199. G.A. McFeters, B.H. Pyle, J.T. Lisle, S.C. Broadaway. 1998. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms. Journal of Applied Microbiology 85:S1, 193S-200S. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

200. Marc Troussellier, Jean-Luc Bonnefont, Claude Courties, Annick Derrien, Elizabeth Dupray, Michel Gauthier, Michèle Gourmelon, Fabien Joux, Philippe Lebaron, Yvan Martin, Monique Pommepuy. 1998. Responses of enteric bacteria to environmental stresses in seawater. Oceanologica Acta 21:6, 965-981. [CrossRef] 201. Yvan Martin, Marc Troussellier, Jean-Luc Bonnefont. 1998. Adaptative responses of E. coli to marine environmental stresses: a modelling approach based on viability and dormancy concepts. Oceanologica Acta 21:6, 951-964. [CrossRef] 202. Bernard Baleux, Audrey Caro, Jean Lesne, Patrice Got, Sylvie Binard, Bruno Delpeuch. 1998. Survie et maintien de la virulence de Salmonella Typhimurium VNC exposée simultanément à trois facteurs stressants expérimentaux. Oceanologica Acta 21:6, 939-950. [CrossRef] 203. B Fouz, A.E Toranzo, E Marco-Noales, C Amaro. 1998. Survival of fish-virulent strains of Photobacterium damselae subsp. damselae in seawater under starvation conditions. FEMS Microbiology Letters 168:2, 181-186. [CrossRef] 204. M Federighi, J.L Tholozan, J.M Cappelier, J.P Tissier, J.L Jouve. 1998. Evidence of non-coccoid viable but nonculturableCampylobacter jejunicells in microcosm water by direct viable count, CTC-DAPI double staining, and scanning electron microscopy. Food Microbiology 15:5, 539-550. [CrossRef] 205. Susanne Prior, Bo Riemann. 1998. Effects of tributyltin, linear alkylbenzenesulfonates, and nutrients (nitrogen and phosphorus) on nucleoid-containing bacteria. Environmental Toxicology and Chemistry 17:8, 1473-1480. [CrossRef] 206. Christiane Höller, Waltraud Martin. 1998. Evaluation of the direct viable count method for temperature-stressed Campylobacter coli. Journal of Microbiological Methods 33:2, 157-162. [CrossRef] 207. S.C. Williams, Y. Hong, D.C.A. Danavall, M.H. Howard-Jones, D. Gibson, M.E. Frischer, P.G. Verity. 1998. Distinguishing between living and nonliving bacteria: Evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. Journal of Microbiological Methods 32:3, 225-236. [CrossRef] 208. Joseph Troxler, Marcello Zala, Andreas Natsch, Jakob Nievergelt, Christoph Keel, Geneviève Défago. 1998. Transport of a biocontrol Pseudomonas fluorescens through 2.5-M deep outdoor lysimeters and survival in the effluent water. Soil Biology and Biochemistry 30:5, 621-631. [CrossRef] 209. Gabriël Zwart, Raymond Huismans, Miranda P Agterveld, Yves Peer, Peter Rijk, Hugo Eenhoorn, Gerard Muyzer, Erik J Hannen, Herman J Gons, Hendrikus J Laanbroek. 1998. Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. FEMS Microbiology Ecology 25:2, 159-169. [CrossRef] 210. Diane McDougald, Scott A Rice, Dieter Weichart, Staffan Kjelleberg. 1998. Nonculturability: adaptation or debilitation?. FEMS Microbiology Ecology 25:1, 1-9. [CrossRef] 211. Anne-Sophie Braux, Jacques Minet, Zohreh Tamanai-Shacoori, Gwenaelle Riou, Michel Cormier. 1997. Direct enumeration of injured Escherichia coli cells harvested onto membrane filters. Journal of Microbiological Methods 31:1-2, 1-8. [CrossRef] 212. D Jay GrimesBiotechnology and the Environment 19972232, 731-741. [CrossRef] 213. Keishi Senoo, Ken-ichiro Izumi, Masaya Nishiyama, Satoshi Matsumoto. 1997. Distribution of a bacterium (γ-1,2,3,4,5,6hexachlorocyclohexane-decomposing Sphingomonas paucimobilis ) among soil aggregates. Soil Science and Plant Nutrition 43:2, 463-468. [CrossRef] 214. I Barcina, P Lebaron, J Vives-Rego. 1997. Survival of allochthonous bacteria in aquatic systems: a biological approach. FEMS Microbiology Ecology 23:1, 1-9. [CrossRef] 215. Sibylle Kalmbach, Werner Manz, Ulrich Szewzyk. 1997. Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microbiology Ecology 22:4, 265-279. [CrossRef] 216. Leo Eberl, Michael Givskov, Lars Kongsbak Poulsen, Søren Molin. 1997. Use of bioluminescence for monitoring the viability of individual Pseudomonas putida KT2442 cells. FEMS Microbiology Letters 149:1, 133-140. [CrossRef] 217. Janet K. Jansson, James I. Prosser. 1997. Quantification of the presence and activity of specific microorganisms in nature. Molecular Biotechnology 7:2, 103-120. [CrossRef] 218. Thomas Müller, Wolfgang Seyfarth. 1997. Starvation and nonculturable state in plant-associated lactic acid bacteria. Microbiological Research 152:1, 39-43. [CrossRef] 219. References 446-512. [CrossRef] 220. Fabien Joux, Philippe Lebaron, Marc Troussellier. 1997. Succession of cellular states in a Salmonella typhimurium population during starvation in artificial seawater microcosms. FEMS Microbiology Ecology 22:1, 65-76. [CrossRef] 221. Takeshi Naganuma. 1996. Differential enumeration of intact and damaged marine planktonic bacteria based on cell membrane integrity. Journal of Aquatic Ecosystem Health 5:4, 217-222. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

222. R.S. Burton. 1996. Molecular tools in marine ecology. Journal of Experimental Marine Biology and Ecology 200:1-2, 85-101. [CrossRef] 223. Frank Oliver Glöckner, Rudolf Amann, Albin Alfreider, Jakob Pernthaler, Roland Psenner, Karlheinz Trebesius, Karl-Heinz Schleifer. 1996. An In Situ Hybridization Protocol for Detection and Identification of Planktonic Bacteria. Systematic and Applied Microbiology 19:3, 403-406. [CrossRef] 224. A. Fernández-Astorga, M.J. Hijarrubia, B. Lázaro, I. Barcina. 1996. Effect of the pre-treatments for milk samples filtration on direct viable cell counts. Journal of Applied Microbiology 80:5, 511-516. [CrossRef] 225. O. Nybroe, K. Einarson, T. Ahl. 1996. Growth and viability of Alcaligenes eutrophus JMP134 in seawater as affected by substrate and nutrient amendment. Letters in Applied Microbiology 22:5, 366-370. [CrossRef] 226. Shirley S. Coleman, James D. Oliver. 1996. Optimization of conditions for the polymerase chain reaction amplification of DNA from culturable and nonculturable cells of Vibrio vulnificus. FEMS Microbiology Ecology 19:2, 127-132. [CrossRef] 227. Asim K. Bej, Wee-Yao Ng, Shellie Morgan, Daniel D. Jones, Meena H. Mahbubani. 1996. Detection of viableVibrio cholerae by reverse-transcriptase polymerase chain reaction (RT-PCR). Molecular Biotechnology 5:1, 1-10. [CrossRef] 228. P. R. Jensen, C. A. Kauffman, W. Fenical. 1996. High recovery of culturable bacteria from the surfaces of marine algae. Marine Biology 126:1, 1-7. [CrossRef] 229. M.A.R. Chowdhury, B. Xu, R. Montilla, J.A.K. Hasan, A. Huq, R.R. Colwell. 1995. A simplified immunofluorescence technique for detection of viable cells of Vibrio cholerae O1 and O139. Journal of Microbiological Methods 24:2, 165-170. [CrossRef] 230. Aurora Fernández-Astorga, María José Hijarrubia, Beatriz Lázaro, Isabel Barcina. 1995. A useful and rapid method to recover bacterial cells from milk samples for microscopic count. Journal of Microbiological Methods 24:2, 111-115. [CrossRef] 231. Wolfram Schlimme, Bea Baur, Kurt Hanselmann, Bernard Jenni. 1995. An agarose slide method to follow the fate of bacteria within digestive vacuoles of protozoa. FEMS Microbiology Letters 133:1-2, 169-173. [CrossRef] 232. J. Porter, C. Edwards, R.W. Pickup. 1995. Rapid assessment of physiological status in Escherichia coli using fluorescent probes. Journal of Applied Microbiology 79:4, 399-408. [CrossRef] 233. C.E. Heijnen, S. Page, J.D. Elsas. 1995. Metabolic activity of Flavobacterium strain P25 during starvation and after introduction into bulk soil and the rhizosphere of wheat. FEMS Microbiology Ecology 18:2, 129-138. [CrossRef] 234. Martin Wahl. 1995. Bacterial epibiosis on Bahamian and Pacific ascidians. Journal of Experimental Marine Biology and Ecology 191:2, 239-255. [CrossRef] 235. Thomas Ahl, Kirsten Christoffersen, Bo Riemann, Ole Nybroe. 1995. A combined microcosm and mesocosm approach to examine factors affecting survival and mortality of Pseudomonas fluorescens Ag1 in seawater. FEMS Microbiology Ecology 17:2, 107-116. [CrossRef] 236. R.A.N. Chmielewski, J.F. Frank. 1995. Formation of viable but nonculturable Salmonella during starvation in chemically defined solutions. Letters in Applied Microbiology 20:6, 380-384. [CrossRef] 237. Isabel Barcina, Inés Arana, Patricia Santorum, Juan Iriberri, Luis Egea. 1995. Direct viable count of Gram-positive and Gramnegative bacteria using ciprofloxacin as inhibitor of cellular division. Journal of Microbiological Methods 22:2, 139-150. [CrossRef] 238. J.T. Fish, G.W. Pettibone. 1995. Influence of freshwater sediment on the survival of Escherichia coli and Salmonella sp. as measured by three methods of enumeration. Letters in Applied Microbiology 20:5, 277-281. [CrossRef] 239. N.A. Servis, S. Nichols, J.C. Adams. 1995. Development of a direct viable count procedure for some Gram-positive bacteria. Letters in Applied Microbiology 20:4, 237-239. [CrossRef] 240. J.P. Diaper, C. Edwards. 1994. The use of fluorogenic esters to detect viable bacteria by flow cytometry. Journal of Applied Microbiology 77:2, 221-228. [CrossRef] 241. Jacques Ravel, Russell T. Hill, Rita R. Colwell. 1994. Isolation of a Vibrio cholerae transposon-mutant with an altered viable but nonculturable response. FEMS Microbiology Letters 120:1-2, 57-61. [CrossRef] 242. Michèle Gourmelon, J. Cillard, M. Pommepuy. 1994. Visible light damage to Escherichia coli in seawater: oxidative stress hypothesis. Journal of Applied Microbiology 77:1, 105-112. [CrossRef] 243. I. EFFENDI, B. AUSTIN. 1994. Survival of the fish pathogen Aeromonas salmonicida in the marine environment. Journal of Fish Diseases 17:4, 375-385. [CrossRef] 244. Feipeing P. Yu, Gordon A. McFeters. 1994. Rapid in situ assessmetn of physiological activities in bacterial biofilms using fluorescent probes. Journal of Microbiological Methods 20:1, 1-10. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

245. SIMIN H. ABRISHAMI, BEN D. TALL, THOMAS J. BRUURSEMA, PAUL S. EPSTEIN, DHIREN B. SHAH. 1994. BACTERIAL ADHERENCE AND VIABILITY ON CUTTING BOARD SURFACES. Journal of Food Safety 14:2, 153-172. [CrossRef] 246. Theresa B. Britschgi, Robert D. Fallon. 1994. PCR-amplification of mixed 16S rRNA genes from an anaerobic, cyanidedegrading consortium. FEMS Microbiology Ecology 13:3, 225-232. [CrossRef] 247. Carmen Buchrieser, Charles W. Kaspar. 1993. An improved direct viable count for the enumeration of bacteria in milk. International Journal of Food Microbiology 20:4, 227-237. [CrossRef] 248. N.A. Servis, M.S. Lytle, D.B. Midthun, R.A. Leake, J.C. Adams. 1993. Comparison of isopropyl cinodine with nalidixic acid in the direct viable count. Journal of Applied Microbiology 75:6, 583-587. [CrossRef] 249. Svend Jørgen Binnerup, Jan Sørensen. 1993. Long-term oxidant deficiency in Pseudomonas aeruginosa PAO303 results in cells which are non-culturable under aerobic conditions. FEMS Microbiology Ecology 13:1, 79-84. [CrossRef] 250. G. Thouand, J.C. Block. 1993. Utilisation d'inogula preculttves dans les essais de biodegradabilite the use of precultured inocula for biodegradability tests. Environmental Technology 14:7, 601-614. [CrossRef] 251. Svend Jørgen Binnerup, Dan Funck Jensen, Hans Thordal-Christensen, Jan Sørensen. 1993. Detection of viable, but nonculturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiology Ecology 12:2, 97-105. [CrossRef] 252. A. Maruyama, N. Mita, T. Higashihara. 1993. Particulate materials and microbial assemblages around the Izena black smoking vent in the Okinawa trough. Journal of Oceanography 49:3, 353-367. [CrossRef] 253. Arseny S. Kaprelyants, Jan C. Gottschal, Douglas B. Kell. 1993. Dormancy in non-sporulating bacteria. FEMS Microbiology Letters 104:3-4, 271-286. [CrossRef] 254. P.E. Turpin, K.A. Maycroft, C.L. Rowlands, E.M.H. Wellington. 1993. Viable but non-culturable salmonellas in soil. Journal of Applied Microbiology 74:4, 421-427. [CrossRef] 255. Feipeng P. Yu, Barry H. Pyle, Gordon A. McFeters. 1993. A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection. Journal of Microbiological Methods 17:3, 167-180. [CrossRef] 256. E. Wilberg, T. El-Banna, G. Auling, T. Egli. 1993. Serological Studies on Nitrilotriacetic Acid (NTA)-Utilizing Bacteria: Distribution of Chelatobacter heintzii and Chelatococcus asaccharovorans in Sewage Treatment Plants and Aquatic Ecosystems. Systematic and Applied Microbiology 16:1, 147-152. [CrossRef] 257. Masahiko Nishimura, Kumiko Kita-Tsukamoto, Kazuhiro Kogure, Kouichi Ohwada, Usio Simidu. 1993. A new method to detect viable bacteria in natural seawater using 16SrRNA oligonucleotide probe. Journal of Oceanography 49:1, 51-56. [CrossRef] 258. D.L. White, R.W. Attwell. 1993. Use of the elzone particle counter to monitor morphological changes in bacteria associated with endospore germination and direct viable counting. Journal of Microbiological Methods 17:1, 77-83. [CrossRef] 259. Catherine Desmonts, Jacques Minet, Rita Colwell, Michel Cormier. 1992. An improved filter method for direct viable count of Salmonella in seawater. Journal of Microbiological Methods 16:3, 195-201. [CrossRef] 260. Dieter Weichart, James D. Oliver, Staffan Kjelleberg. 1992. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiology Letters 100:1-3, 205-210. [CrossRef] 261. Christine Paszko-Kolva, Manouchehr Shahamat, Rita R. Colwell. 1992. Long-term survival of Legionella pneumophila serogroup 1 under low-nutrient conditions and associated morphological changes. FEMS Microbiology Letters 102:1, 45-55. [CrossRef] 262. G.J. Mederma, F.M. Schets, A.W. Giessen, A.H. Havelaar. 1992. Lack of colonization of 1 day old chicks by viable, non-culturable Campylobacter jejuni. Journal of Applied Microbiology 72:6, 512-516. [CrossRef] 263. Paula W. Wolf, James D. Oliver. 1992. Temperature effects on the viable but non-culturable state of Vibrio vulnificus. FEMS Microbiology Letters 101:1, 33-39. [CrossRef] 264. Paula W. Wolf, James D. Oliver. 1992. Temperature effects on the viable but non-culturable state of Vibrio vulnificus. FEMS Microbiology Ecology 10:1, 33-39. [CrossRef] 265. A.M. McKay. 1992. Viable but non-culturable forms of potentially pathogenic bacteria in water. Letters in Applied Microbiology 14:4, 129-135. [CrossRef] 266. Philippe Dufour, Michel Colon. 1992. The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: improvements, performance and applications. Hydrobiologia 232:3, 211-218. [CrossRef] 267. Dieter Weichart, James D. Oliver, Staffan Kjelleberg. 1992. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiology Letters 100:1-3, 205. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

268. T. L. Maugeri, M. L. C. Acosta Pomar, V. Bruni, L. Salomone. 1992. Picoplankton and Picophytoplankton in the Ligurian Sea and Straits of Messina (Mediterranean Sea). Botanica Marina 35:6. . [CrossRef] 269. T.Eugene Cloete, Volker S. Brözel, Alexander Von Holy. 1992. Practical aspects of biofouling control in industrial water systems. International Biodeterioration & Biodegradation 29:3-4, 299-341. [CrossRef] 270. Paul I. Boon. 1991. Bacterial assemblages in rivers and billabongs of Southeastern Australia. Microbial Ecology 22:1, 27-52. [CrossRef] 271. C. Paszko-Kolva, M. Shahamat, H. Yamamoto, T. Sawyer, J. Vives-Rego, R. R. Colwell. 1991. Survival ofLegionella pneumophila in the aquatic environment. Microbial Ecology 22:1, 75-83. [CrossRef] 272. C. A. Liebert, T. Barkay, R. R. Turner. 1991. Acclimation of aquatic microbial communities to Hg(II) and CH3Hg+ in polluted freshwater ponds. Microbial Ecology 21:1, 139-149. [CrossRef] 273. Télesphore Sime-Ngando, Hans Julian Hartmann. 1991. Short-term variations of the abundance and biomass of planktonic ciliates in a eutrophic lake. European Journal of Protistology 27:3, 249-263. [CrossRef] 274. Cheryl M. Davies. 1991. A comparison of fluorochromes for direct viable counts by image analysis. Letters in Applied Microbiology 13:2, 58-61. [CrossRef] 275. G.A. McFeters, A. Singh, S. Byun, P.R. Callis, S. Williams. 1991. Acridine orange staining reaction as an index of physiological activity in Escherichia coli. Journal of Microbiological Methods 13:2, 87-97. [CrossRef] 276. Cheryl M. Davies, Lilian M. Evison. 1991. Sunlight and the survival of enteric bacteria in natural waters. Journal of Applied Microbiology 70:3, 265-274. [CrossRef] 277. J.C. Adams, M.S. Lytle, D.G. Dickman, W.R. Bressler. 1991. Use of Direct Viable Count Methodology With Ozonation in Drinking Water. Ozone: Science & Engineering 13:1, 1-10. [CrossRef] 278. Paul G. Falkowski, Julie LaRocheMolecular Biology in Studies of Ocean Processes 128, 261-303. [CrossRef] 279. D.W. Hopkins, S.J. Macnaughton, A.G. O'Donnell. 1991. A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biology and Biochemistry 23:3, 217-225. [CrossRef] 280. Zdeněk Fišar, Josef Hýsek, Bedřich Binek. 1990. Quantification of airborne microorganisms and investigation of their interactions with non-living particles. International Journal of Biometeorology 34:3, 189-193. [CrossRef] 281. G.H. Hall, J.G. Jones, R.W. Pickup, B.M. Simon5 Methods to Study the Bacterial Ecology of Freshwater Environments 22, 181-209. [CrossRef] 282. T.I. Ladd, J.W. Costerton9 Methods for Studying Biofilm Bacteria 22, 285-307. [CrossRef] 283. T.I. Ladd, J.W. Costerton, T.R.G. Gray, Juliet C. Frankland, J. Dighton, Lynne Boddy 22, 285. [CrossRef] 284. John C. Fry2 Direct Methods and Biomass Estimation 22, 41-85. [CrossRef] 285. R.A. Herbert1 Methods for Enumerating Microorganisms and Determining Biomass in Natural Environments 22, 1-39. [CrossRef] 286. S. A. Al-Hadithi, R. Goulder. 1989. A note on the physiological state of epiphytic bacteria compared with planktonic bacteria in two organically-enriched watercourses. Journal of Applied Microbiology 67:3, 293-297. [CrossRef] 287. Ajaib Singh, Barry H. Pyle, Gordon A. McFeters. 1989. Rapid enumeration of viable bacteria by image analysis. Journal of Microbiological Methods 10:2, 91-101. [CrossRef] 288. JAMES D. OLIVER, DONNA WANUCHA. 1989. SURVIVAL OF VIBRIO VULNIFICUS AT REDUCED TEMPERATURES AND ELEVATED NUTRIENT. Journal of Food Safety 10:2, 79-86. [CrossRef] 289. S.A. Al-Hadithi, R. Goulder. 1989. An alternative approach to the yeast extract-nalidixic acid method for determining the proportion of metabolically active aquatic bacteria. Letters in Applied Microbiology 8:3, 87-90. [CrossRef] 290. Jürgen Marxsen. 1988. Investigations into the number of respiring bacteria in groundwater from sandy and gravelly deposits. Microbial Ecology 16:1, 65-72. [CrossRef] 291. MARTA TESAŘOVÁMicroorganisms and the carbon cycle in terrestrial ecosystems 17, 339-405. [CrossRef] 292. J.L. Zelibor, M. Tamplin, R.R. Colwell. 1987. A method for measuring bacterial resistance to metals employing epifluorescent microscopy. Journal of Microbiological Methods 7:2-3, 143-155. [CrossRef] 293. Rita R. Colwell. 1987. From counts to clones. Journal of Applied Microbiology 63:s16, 1s-6s. [CrossRef] 294. Sally A. Mayasich, Richard A. Smucker. 1987. Role ofCristispira sp. and other bacteria in the chitinase and chitobiase activities of the crystalline style ofCrassostrea virginica (Gmelin). Microbial Ecology 14:2, 157-166. [CrossRef]

Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC MADISON on 04/02/13 For personal use only.

295. P.R. Brayton, R.R. Colwell. 1987. Fluorescent antibody staining method for enumeration of viable environmental Vibrio cholerae 01. Journal of Microbiological Methods 6:6, 309-314. [CrossRef] 296. D. Hussong, R. R. Colwell, M. O'Brien, E. Weiss, A. D. Pearson, R. M. Weiner, W. D. Burge. 1987. Viable Legionella pneumophila Not Detectable by Culture on Agar Media. Bio/Technology 5:9, 947-950. [CrossRef] 297. Francis H. Chapelle, Joseph L. Zelibor, D. Jay Grimes, LeRoy L. Knobel. 1987. Bacteria in deep coastal plain sediments of Maryland: A possible source of CO 2 to groundwater. Water Resources Research 23:8, 1625-1632. [CrossRef] 298. Hilde Nissen. 1987. Long term starvation of a marine bacterium, Alteromonas denitrificans , isolated from a Norwegian fjord. FEMS Microbiology Letters 45:3, 173-183. [CrossRef] 299. B. Austin. 1987. Non-gastrointestinal diseases. Experientia 43:4, 358-359. [CrossRef] 300. Morris A. Levin, Ramon Seidler, Al W. Borquin, John R. Fowle, Tamar Barkay. 1987. EPA Developing Methods to Assess Environmental Release. Bio/Technology 5:1, 38-45. [CrossRef] 301. C.A. Mason, G. Hamer, J.D. Bryers. 1986. The death and lysis of microorganisms in environmental processes. FEMS Microbiology Letters 39:4, 373-401. [CrossRef] 302. D.J. Grimes, R.R. Colwell. 1986. Viability and virulençe of Escherichia coli suspended by membrane chamber in semitropical ocean water. FEMS Microbiology Letters 34:2, 161-165. [CrossRef] 303. M H Schleyer. 1986. DECOMPOSITION IN ESTUARINE ECOSYSTEMS. Journal of the Limnological Society of Southern Africa 12:1-2, 90-98. [CrossRef] 304. Karel Šimek. 1986. Bacterial Activity in a Reservoir Determined by Autoradiography and its Relationships to Phyto- and Zooplankton. Internationale Revue der gesamten Hydrobiologie und Hydrographie 71:5, 593-612. [CrossRef] 305. R. R. Colwell, P. R. Brayton, D. J. Grimes, D. B. Roszak, S. A. Huq, L. M. Palmer. 1985. Viable but Non-Culturable Vibrio cholerae and Related Pathogens in the Environment: Implications for Release of Genetically Engineered Microorganisms. Bio/ Technology 3:9, 817-820. [CrossRef] 306. Elisa L Elliot, Rita R Colwell. 1985. Indicator organisms for estuarine and marine waters. FEMS Microbiology Letters 32:2, 61-79. [CrossRef] 307. Traute-Heidi Anderson, K.H. Domsch. 1985. Maintenance carbon requirements of actively-metabolizing microbial populations under in situ conditions. Soil Biology and Biochemistry 17:2, 197-203. [CrossRef] 308. J.P. Quinn. 1984. The modification and evaluation of some cytochemical techniques for the enumeration of metabolically active heterotrophic bacteria in the aquatic environment. Journal of Applied Microbiology 57:1, 51-57. [CrossRef] 309. D. Allen-Austin, B. Austin, R.R. Colwell. 1984. Survival of Aeromonas salmonicida in river water. FEMS Microbiology Letters 21:2, 143-146. [CrossRef] 310. L.M. Palmer, A.M. Baya, D.J. Grimes, R.R. Colwell. 1984. Molecular genetic and phenotypic alteration of Escherichia coli in natural water microcosms containing toxic chemicals. FEMS Microbiology Letters 21:2, 169-173. [CrossRef] 311. R. Delesmont, J. M. Delattre. 1983. Une Mesure globale De La toxicite pour les bacteries marines par microscopie en epifluorescence (a measure of toxicity to marine bacteria using epifluorescence microscopy). Environmental Technology Letters 4:6, 265-270. [CrossRef] 312. Věra Straškrabová. 1983. The effect of substrate shock on populations of starving aquatic bacteria. Journal of Applied Microbiology 54:2, 217-224. [CrossRef] 313. Huai -Shu Xu, N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes, R. R. Colwell. 1982. Survival and viability of nonculturableEscherichia coli andVibrio cholerae in the estuarine and marine environment. Microbial Ecology 8:4, 313-323. [CrossRef] 314. J.C. Fry, Talat Zia. 1982. A method for estimating viability of aquatic bacteria by slide culture. Journal of Applied Microbiology 53:2, 189-198. [CrossRef] 315. Paul S. Tabor, Kouichi Ohwada, Rita R. Colwell. 1981. Filterable marine bacteria found in the deep sea: Distribution, taxonomy, and response to starvation. Microbial Ecology 7:1, 67-83. [CrossRef] 316. Steve A. Orndorff, R. R. Colwell. 1980. Effect of Kepone on estuarine microbial activity. Microbial Ecology 6:4, 357-368. [CrossRef]

A tentative direct microscopic method for counting living marine bacteria.

A tentative direct microscopic method for counting living marine bacteria Can. J. Microbiol. Downloaded from www.nrcresearchpress.com by UNIV OF WISC...
472KB Sizes 0 Downloads 0 Views