nanomaterials Article

Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells Qian Hua Xia, Yan Jun Ma and Jian Wen Wang * College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; [email protected] (Q.H.X.); [email protected] (Y.J.M.) * Correspondence: [email protected] or [email protected]; Tel.: +86-512-6956-1430 Academic Editor: Eleonore Fröhlich Received: 12 May 2016; Accepted: 26 August 2016; Published: 1 September 2016

Abstract: Plant constituents could act as chelating/reducing or capping agents for synthesis of silver nanoparticles (AgNPs). The green synthesis of AgNPs has been considered as an environmental friendly and cost-effective alternative to other fabrication methods. The present work described the biosynthesis of AgNPs using callus extracts from Taxus yunnanensis and evaluated their antibacterial activities in vitro and potential cytotoxicity in cancer cells. Callus extracts were able to reduce silver nitrate at 1 mM in 10 min. Transmission electron microscope (TEM) indicated the synthesized AgNPs were spherical with the size range from 6.4 to 27.2 nm. X-ray diffraction (XRD) confirmed the AgNPs were in the form of nanocrystals. Fourier transform infrared spectroscopy (FTIR) suggested phytochemicals in callus extracts were possible reducing and capping agents. The AgNPs exhibited effective inhibitory activity against all tested human pathogen bacteria and the inhibition against Gram-positive bacteria was stronger than that of Gram-negative bacteria. Furthermore, they exhibited stronger cytotoxic activity against human hepatoma SMMC-7721 cells and induced noticeable apoptosis in SMMC-7721 cells, but showed lower cytotoxic against normal human liver cells (HL-7702). Our results suggested that biosynthesized AgNPs could be an alternative measure in the field of antibacterial and anticancer therapeutics. Keywords: Taxus yunnanensis; callus extract; silver nanoparticles; antibacterial; cytotoxicity

1. Introduction As an important antibacterial agent, silver has been used for many years [1]. Recently, silver nanoparticles (AgNPs) promoted the usage of silver in biomedical applications with its unique physic-chemical, optical and biological properties [2,3]. Several methods have been developed for the synthesis of AgNPs, including physical, chemical and biological methods [4,5]. The biological synthetic methods are preferred because they are safe, cheap and environment-friendly, whereas other physical and chemical methods require energy, high pressure, temperature and chemicals toxic to biological systems. Plants and microbes are currently used for AgNP synthesis among the biological synthetic methods [6]. Recently, a novel use of plant callus to synthesize AgNPs has been widely investigated. Many kinds of plant callus induced from papaya, alfalfa, Catharanthus roseus and Sesuvium portulacastrum have been applied in the green synthesis of AgNPs [7–10]. Applying plant callus in synthesizing AgNPs avoids various drawbacks including low yield, high expense, energy consumption in the physical approaches, and contamination in the wet-chemical procedure [11]. As an incessant source in laboratory, callus culture overcomes the difficulties of scarcity in wild plant source [8]. Interestingly, callus extracts were more efficient in the fabrication of AgNPs and the synthesized AgNPs were more

Nanomaterials 2016, 6, 160; doi:10.3390/nano6090160

www.mdpi.com/journal/nanomaterials

Nanomaterials 2016, 6, 160 Nanomaterials 2016, 6, 160   

2 of 15 2 of 15 

AgNPs were more distinct and scattered in distribution than those synthesized by intact leaf extract  distinct and scattered in distribution than those synthesized by intact leaf extract [10]. The AgNPs [10].  The  AgNPs  biologically  synthesized  by  callus  showed  excellent  antibacterial  against  biologically synthesized by callus showed excellent antibacterial effect against humaneffect  pathogenic human pathogenic microorganisms [9,10]. AgNPs synthesized by calli of Citrullus colocynthis were  microorganisms [9,10]. AgNPs synthesized by calli of Citrullus colocynthis were reported to have reported to have cytotoxic activity against human epidermoid larynx carcinoma cells [12].    cytotoxic activity against human epidermoid larynx carcinoma cells [12]. Taxus yunnanensis Cheng et L.K. Fu (Taxaceae), an evergreen tree endemic to Yunnan of China,  Taxus yunnanensis Cheng et L.K. Fu (Taxaceae), an evergreen tree endemic to Yunnan of China, is a is  a  promising  of  potent  anticancer  paclitaxel  and  taxane‐type  [13].  to  the  promising sourcesource  of potent anticancer paclitaxel and taxane-type diterpenesditerpenes  [13]. Due to the Due  enormous enormous commercial value of paclitaxel and the scarcity of T. yunnanensis trees in China, callus and  commercial value of paclitaxel and the scarcity of T. yunnanensis trees in China, callus and cell cultures cell  cultures  have  been  as  a  practical  alternative  source production for  paclitaxel  [14].  have been established as established  a practical alternative source for paclitaxel [14].production  Many studies Many studies on cell culture of T. yunnanensis focused on enhancing paclitaxel production by means  on cell culture of T. yunnanensis focused on enhancing paclitaxel production by means of elicitation, of elicitation, ultrasound treatment and medium renewal [15,16]. However, little has been reported  ultrasound treatment and medium renewal [15,16]. However, little has been reported on biosynthesized on  biosynthesized  AgNP  using  Taxus  tree  or  Therefore,  a  follow‐up  to  our  efforts for on  AgNP using Taxus tree or callus. Therefore, as acallus.  follow-up to ouras  efforts on exploring AgNPs exploring AgNPs for controlling microbes [17] and biotechnological application of T. yunnanensis [16],  controlling microbes [17] and biotechnological application of T. yunnanensis [16], we therefore wish we therefore wish to report a biological method to synthesize AgNPs using the callus extracts from  to report a biological method to synthesize AgNPs using the callus extracts from T. yunnanensis. T. yunnanensis. The antibacterial and cytotoxic activity of the biosynthesized AgNPs was also investigated.  The antibacterial and cytotoxic activity of the biosynthesized AgNPs was also investigated. 2.2. Results  Results 2.1. The Synthesis of AgNPs 2.1. The Synthesis of AgNPs  Color change of callus extracts incubated with 1 mM AgNO 3 was observed, as shown in Color change of callus extracts incubated with 1 mM AgNO 3 was observed, as shown in Figure  Figure The reaction solution showed a UV-visible absorbance 449nm  nmbecause  because of  of the 1a–d.  1a–d. The  reaction  solution  showed  a  UV‐visible  absorbance  at at 449  the surface surface  plasmon resonance of AgNPs [18] and the absorbance increased with the reaction time but decreased plasmon resonance of AgNPs [18] and the absorbance increased with the reaction time but decreased  after after 60 60 min min ofof the the reaction reaction (Figure (Figure 1e). 1e). AgNPs AgNPs with with pH pH of of 7,7, 8,8, 9,9, 10 10 and and 11 11 showed showed maximum maximum  absorbance at 439, 425, 411, 409 and 450 nm, respectively. There was a blue shift of absorbance from absorbance at 439, 425, 411, 409 and 450 nm, respectively. There was a blue shift of absorbance from  pH 7 to 10, indicating the formation of smaller size nanoparticles [19]. Therefore we chose pH 10 as the pH 7 to 10, indicating the formation of smaller size nanoparticles [19]. Therefore we chose pH 10 as  optimal condition. the optimal condition. 

A bsorb an ce (a.u.) .

(e) 5 (b)

(a)

3 2 1

10 min

0

0.5 cm

0.5 cm

60 min 90 min 120 min 30 min 20 min

4

300

400

450

500

550

600

500

550

600

Wavelength (nm)

(d)

(f) 4

0.5 cm

0.5 cm

Ab so rb an ce (a.u .)

(c)

350

pH = 10.0

pH = 9.0 pH = 8.0 pH = 11.0 2 pH = 7.0 3

1

0 300

350

400

450 Wavelength (nm)

  Figure 1. Callus of T. yunnanensis (a); and color intensity of the extracts incubated with solution of Figure 1. Callus of T. yunnanensis (a); and color intensity of the extracts incubated with solution of  silver ions at the beginning (b); after 10 min (c); and after 120 min of reaction (d). UV-visible absorbance silver  ions  at  the  beginning  (b);  after  10  min  (c);  and  after  120  min  of  reaction  (d).  UV‐visible  of AgNPs synthesized with the extracts under different reaction times (e) and different pH (f). absorbance of AgNPs synthesized with the extracts under different reaction times (e) and different  pH (f). 

 

Nanomaterials 2016, 6, 160   

Nanomaterials 2016, 6, 160

3 of 15

3 of 15 

2.2. Characterization of AgNPs  2.2. Characterization of AgNPs

The biosynthesized AgNPs were characterized using transmission electron microscope (TEM)  The biosynthesized AgNPs were characterized using transmission electron microscope (TEM) (Figure 2),  X‐ray  diffraction  (XRD) and Fourier  transform infrared  spectroscopy  (FTIR) (Figure 3).  (Figure 2), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) (Figure 3). The nanoparticles were in spherical shape. The particle size of the synthesized AgNPs shown by TEM  The nanoparticles were in spherical shape. The particle size of the synthesized AgNPs shown by TEM ranged from 6.4 to 27.2 nm measured by Image J software.  ranged from 6.4 to 27.2 nm measured by Image J software.

  Figure 2. Transmission electron microscope (TEM) analysis of AgNPs synthesized with callus extracts Figure 2. Transmission electron microscope (TEM) analysis of AgNPs synthesized with callus extracts  from T. yunnanensis and AgNO from T. yunnanensis and AgNO 3.  3 .

Theof  XRD of AgNPs (Figure 3a)  3a) exhibited intense peaks peaks  in the whole spectrum of spectrum  2θ value ranging The  XRD  AgNPs  (Figure  exhibited  intense  in  the  whole  of  2θ  value  from 10 to 70. Diffraction peaks at 2θ values of 38.06◦ , 44.11◦ , 64.43◦ and 77.33◦ were corresponded ranging  from  10  to  70.  Diffraction  peaks  at  2θ  values  of  38.06°,  44.11°,  64.43°  and  77.33°  were  to the (111), (200), (220) and (311) crystal faces of face-centered silver, respectively, which was in corresponded  to  the  (200),  (220)  and  (311)  faces  of  face‐centered  silver,  respectively,  accordance with(111),  the values in standard silver card crystal  (JCPDS No. 04-0783). Figure 3b showed the FTIR which  was  in of accordance  with  the synthesized values  in AgNPs standard  silver  card washed (JCPDS  04‐0783).  Figure  3b  spectra aqueous callus extracts, as well as AgNPs withNo.  different solution. − 1 FTIR spectra of AgNPs showed the main peaks at 1625 and 1518 cm , which could be assigned to showed the FTIR spectra of aqueous callus extracts, synthesized AgNPs as well as AgNPs washed  frame vibration of aromatic ring. Peaks at 2924 cm−1 corresponded to asymmetric stretching of C–H−1, which  with different solution. FTIR spectra of AgNPs showed the main peaks at 1625 and 1518 cm bonds. The bands at 2162 and 2033 cm−1 were assigned to CO adsorbed and the band round 1979 cm−1 could be assigned to frame vibration of aromatic ring. Peaks at 2924 cm−1 corresponded to asymmetric  was due to the overtone of C–H out of plane bending. Peaks at 1541, 1456 and 1400 cm−1 corresponded −1 were assigned to CO adsorbed and the  stretching of C–H bonds. The bands at 2162 and 2033 cm to amide II, methylene scissoring vibration and methyl group of proteins, respectively. Another band band round 1979 cm at 800–600 cm−−11  was due to the overtone of C–H out of plane bending. Peaks at 1541, 1456 and  could be attributed to C-H out of plane bend of aromatic phenol. Besides, the FTIR −1 corresponded to amide II, methylene scissoring vibration and methyl group of proteins,  of synthesized AgNPs was similar with that of water-washed and medium-washed AgNPs, 1400 cmspectrum indicating most groups attached to AgNPs could not be removed by washing with water or medium. −1 could be attributed to C‐H out of plane bend of aromatic  respectively. Another band at 800–600 cm Thus, groups around AgNPs were stable and would not release into the medium in both antibacterial phenol. Besides, the FTIR spectrum of synthesized AgNPs was similar with that of water‐washed  and cytotoxicity experiments. Furthermore, no band was observed when AgNPs was washed with and medium‐washed AgNPs, indicating most groups attached to AgNPs could not be removed by  alcohol. This result indicated most groups around AgNPs could be removed by alcohol. The surface washing with water or medium. Thus, groups around AgNPs were stable and would not release into  zeta potentials of water-washed AgNPs, two-week-old AgNPs and alcohol-washed AgNPs were −28.8, −28.3 and −6.64 mV, respectively (Figure 3c). That is, our AgNPs was stable in the water even after the medium in both antibacterial and cytotoxicity experiments. Furthermore, no band was observed  two weeks but the stability decreased after washed by alcohol. Besides, the visible precipitates could be when AgNPs was washed with alcohol. This result indicated most groups around AgNPs could be  seen and after alcohol washing the dry powder of AgNPs could not be dispersed in water (Figure S1), removed by alcohol. The surface zeta potentials of water‐washed AgNPs, two‐week‐old AgNPs and  indicating the colloidal stability of AgNPs was broken. alcohol‐washed AgNPs were −28.8, −28.3 and −6.64 mV, respectively (Figure 3c). That is, our AgNPs  The content of Ag+ in nutrient broth (NB) and RPMI 1640 medium was detected in 24 h (Figure 4). + slowly, was  stable in  the showed water  even  after could two weeks  but  the  stability  decreased after washed  by  alcohol.  The results that AgNPs release Ag which reached the highest content of 2.12 and 0.79 ppm in NB and RPMI 1640 medium, respectively. Besides, the visible precipitates could be seen and after alcohol washing the dry powder of AgNPs  could not be dispersed in water (Figure S1), indicating the colloidal stability of AgNPs was broken.  The  content  of  Ag+  in  nutrient  broth  (NB)  and  RPMI  1640  medium  was  detected  in  24  h    (Figure  4).  The  results  showed  that  AgNPs  could  release  Ag+  slowly,  which  reached  the  highest  content of 2.12 and 0.79 ppm in NB and RPMI 1640 medium, respectively. 

Nanomaterials 2016, 6, 160

4 of 15

Nanomaterials 2016, 6, 160   

4 of 15 

  Figure 3. (a) X‐ray diffraction (XRD) pattern; (b) Fourier transform infrared spectroscopy (FTIR) spectra  Figure 3. (a) X-ray diffraction (XRD) pattern; (b) Fourier transform infrared spectroscopy (FTIR) spectra (1, callus extract; 2, NB medium‐washed AgNPs; 3, RPMI 1640 medium‐washed AgNPs; 4, synthesized  (1, callus extract; 2, NB medium-washed AgNPs; 3, RPMI 1640 medium-washed AgNPs; 4, synthesized AgNPs; 5, water‐washed AgNPs; 6, alcohol‐washed AgNPs); and (c) zeta potential of AgNPs.  AgNPs; 5, water-washed AgNPs; 6, alcohol-washed AgNPs); and (c) zeta potential of AgNPs.

Ag+ concentration (ppm)

2.5 NB RPMI 1640

2.0

Nanomaterials 2016, 6, 160 Nanomaterials 2016, 6, 160  1.5  

5 of 15 5 of 15  2.5

Ag+ concentration (ppm)

1.0

NB RPMI 1640

2.0

0.5 0.0

0

1.5 1.0

6

12

0.5

18

24

Time (h)

 

0.0

Figure 4. The release of Ag+ from AgNPs in NB and RPMI 1640 medium.  0

6

12

18

24

Time (h)

2.3. Antibacterial Activity of AgNPs 

 

Figure 4. The release of Ag Figure 4. The release of Ag  from AgNPs in NB and RPMI 1640 medium.  from AgNPs in NB and RPMI 1640 medium. ++

The  AgNPs  had  concentration‐dependent  inhibitory  effect  on  all  testing  human  pathogenic  2.3. Antibacterial Activity of AgNPs  bacteria (Figure 5). The growth of Staphylococcus aureus, Salmonella paratyphi B and Bacillus subtilis was  2.3. Antibacterial Activity of AgNPs The  AgNPs AgNPs  had  concentration-dependent concentration‐dependent  inhibitory  effect  on  all all  testing testing  human  pathogenic pathogenic  inhibited  by AgNPs  even at  2  μg/mL. The  inhibition  of AgNPs against  Gram‐positive  bacteria  (S.  The had inhibitory effect on human bacteria (Figure 5). The growth of Staphylococcus aureus, Salmonella paratyphi B and Bacillus subtilis was  aureus  and  B.  subtilis)  was  that  of aureus, Gram‐negative  bacteria  (Escherichia  coli  and  S.  bacteria (Figure 5). Thestronger  growth of than  Staphylococcus Salmonella paratyphi B and Bacillus subtilis inhibited  by AgNPs  even at  2  μg/mL. The  inhibition  of AgNPs against  Gram‐positive  bacteria  (S.  was inhibited3 control at 1699 μg/mL (10 mM) showed no antibacterial activity against E.coli  by AgNPs even at 2 µg/mL. The inhibition of AgNPs against Gram-positive bacteria paratyphi B). AgNO aureus  and  B.  subtilis)  was  stronger  than  that  of  Gram‐negative  bacteria  (Escherichia  coli  and  S.  (S. aureus and B. subtilis) was stronger than that of Gram-negative bacteria (Escherichia coli and and lower activity against other three bacteria. The control gentamycin sulfate at 1 mM had greater  paratyphi B). AgNO 3 control at 1699 μg/mL (10 mM) showed no antibacterial activity against E.coli  S. paratyphi B). AgNO 3 control at 1699 µg/mL (10 mM) showed no antibacterial activity against E. coli inhibitory  effect  on  gram‐negative  bacteria  E.  coli  and  S.  paratyphi  B  but  weaker  effect  on  gram‐ and lower activity against other three bacteria. The control gentamycin sulfate at 1 mM had greater  and lower activity against other three bacteria. The control gentamycin sulfate at 1 mM had greater inhibitory effect effect  on  gram‐negative  bacteria  E.  coli  S. callus  paratyphi  B  but  weaker  effect  on  gram‐ positive  bacteria  S.  aureus  and  B.  subtilis.  The  control  of  extracts  at  different  concentrations  inhibitory on gram-negative bacteria E. coli and and  S. paratyphi B but weaker effect on gram-positive positive  bacteria  S.  aureus  and  B.  subtilis.  The  control  of  callus  extracts (Figure  at  different  (0.1%–10%)  had  no  inhibition  effects  against  all  tested  bacteria  6). concentrations  We  further  tested  bacteria S. aureus and B. subtilis. The control of callus extracts at different concentrations (0.1%–10%) (0.1%–10%)  had  no  inhibition  effects  against  all  tested  bacteria  (Figure  6).  We  further  tested  had no inhibition effects against all tested bacteria (Figure 6). We further tested antibacterial activity of antibacterial activity of AgNPs by the minimum inhibitory concentration (MIC). As shown in Figure  antibacterial activity of AgNPs by the minimum inhibitory concentration (MIC). As shown in Figure  AgNPs by the minimum inhibitory concentration (MIC). As shown in Figure 7, antibacterial activity 7, antibacterial activity increased with the increasing concentration of AgNPs. MIC of AgNPs was 8,  7, antibacterial activity increased with the increasing concentration of AgNPs. MIC of AgNPs was 8,  increased with the increasing concentration of AgNPs. MIC of AgNPs was 8, 1, 1 and 4 µg/mL against 1, 1 and 4 μg/mL against E. coli, S. aureus, B. subtilis and S. paratyphi B, respectively.  1, 1 and 4 μg/mL against E. coli, S. aureus, B. subtilis and S. paratyphi B, respectively.  E. coli, S. aureus, B. subtilis and S. paratyphi B, respectively.

(a) (a) 1

(b) (b) 1

2

4

4

2

3

3 5

5

(c)

6

4

4

5

4

2

3

3

6

6

5

(d) 2

1

1

2

1

6

(c)

1

4

2

5

5

3

3 6 6

(d)

1

2

41

52

4

3

5

6

3 6

 

Figure 5. Activity of AgNPs against human pathogen: (a) E. coli; (b) S. aureus; (c) S. paratyphi B; and  (d) B. subtilis, depicting zones of inhibition of: 128 μg/mL (1); 32 μg/mL (2); 8 μg/mL (3); 2 μg/mL (4);  1699 μg/mL AgNO3 control (5); and 1 mM gentamycin sulfate (6).     

Figure 5. Activity of AgNPs against human pathogen: (a) E. coli; (b) S. aureus; (c) S. paratyphi B; and  Figure 5. Activity of AgNPs against human pathogen: (a) E. coli; (b) S. aureus; (c) S. paratyphi B; and (d) B. subtilis, depicting zones of inhibition of: 128 µg/mL (1); 32 µg/mL (2); 8 µg/mL (3); (d) B. subtilis, depicting zones of inhibition of: 128 μg/mL (1); 32 μg/mL (2); 8 μg/mL (3); 2 μg/mL (4);  2 µg/mL (4);3 control (5); and 1 mM gentamycin sulfate (6).  1699 µg/mL AgNO3 control (5); and 1 mM gentamycin sulfate (6). 1699 μg/mL AgNO  

Nanomaterials 2016, 6, 160   

6 of 15 

Nanomaterials 2016, 6, 160  Nanomaterials 2016, 6, 160  (b) (a) 2

4 (a)

6

5 1

2

4

2

3

4(b) 5

6

1

2

3

5

6

1

3

3 6

5

4

1

2

(c) 4

5

3 6

1

2

4

5

1

2

3

(d) 4

5

6

3 6

Staphylococcus aureus 12

(e)

(d)

(c)

1

2

3

4

5

6

6 of6 of 15  15

16

Growth inhibition (%) Growth inhibition (%)

1

(e)

8

Bacillus subtilis

16

Salmonella paratyphi B Staphylococcus aureus Escherichia coli Bacillus subtilis

12

Salmonella paratyphi B

4 8

Escherichia coli

0 4 1699

500

-4 0

2

AgNO3 (g/mL) 500

1699 -4

10%

2

1%

0.1%

Callus extracts 1% 0.1%

10%

Callus extracts

AgNO3 (g/mL)

 

Figure 6. Activity (a–d) and growth inhibition (e) of: AgNO Figure 6. Activity (a–d) and growth inhibition (e) of: AgNO 3 at 1699 μg/mL (1); 500 μg/mL (2); and 2  3 at 1699 µg/mL (1); 500 µg/mL (2);   and 2 µg/mL (3), and callus extracts at: 10% (4); 1% (5); and 0.1% (6), against human pathogen: μg/mL (3), and callus extracts at: 10% (4); 1% (5); and 0.1% (6), against human pathogen: (a) E. coli; (b)  Figure 6. Activity (a–d) and growth inhibition (e) of: AgNO3 at 1699 μg/mL (1); 500 μg/mL (2); and 2  (a) E. coli; (b) S. aureus; (c) S. paratyphi B; and (d) B. subtilis. S. aureus; (c) S. paratyphi B; and (d) B. subtilis.  μg/mL (3), and callus extracts at: 10% (4); 1% (5); and 0.1% (6), against human pathogen: (a) E. coli; (b) 

S. aureus; (c) S. paratyphi B; and (d) B. subtilis. 

(a)  (a) 

(b)  (b) 

120

120

Growth inhibition (%) Growth inhibition (%)

Growth inhibition (%)

Growth inhibition (%)

120

90 90

60

60

30

30

0

120 90 90 60 60

30 30

0 0.5 0

1 0.5

2 1

4

8

16

AgNPs (g/mL) 4 8

2

32 16

64 32

128 64

0

128

0.5 0.5

1

2

4

1

2

4 AgNPs8(g/mL)16

AgNPs (g/mL)

120

120 120

90

90 90

Growth inhibition (%) Growth inhibition (%)

Growth inhibition (%)

Growth inhibition (%)

90

60

60

30

0 0.5

32

64

128

32

64

128

32 32

64 64

128 128

(d)  (d) 

120

0

16

AgNPs (g/mL)

(c)  (c) 

30

8

60 60 30 30 0

0.5

1

1

2

2

4

8 16 4 8 16 AgNPs (g/mL) AgNPs (g/mL)

32

32

64

64

128 128

0

0.5 0.5

1 1

2 2

4 4

8 16 8 16 AgNPs ( g/mL) AgNPs (g/mL)

  

Figure 7. Determination of the minimum inhibitory concentration (MIC) against: E. coli (a); S. aureus (b); Figure 7. Determination of the minimum inhibitory concentration (MIC) against: E. coli (a); S. aureus  Figure 7. Determination of the minimum inhibitory concentration (MIC) against: E. coli (a); S. aureus  B. subtilis (c); and S. paratyphi B (d).

(b); B. subtilis (c); and S. paratyphi B (d).  (b); B. subtilis (c); and S. paratyphi B (d). 

2.4. Cytotoxicity Experiments  2.4. Cytotoxicity Experiments  shown  Figure  8a,  10%  (v/v) callus  callus extracts  extracts had  had no  no  obvious  cytotoxicity  3  3  As As  shown  in in  Figure  8a,  10%  (v/v)  cytotoxicity while  while AgNO AgNO control  at  0.79  ppm  had  cytotoxic  effect on  on human  human colon  colon adenocarcinoma  adenocarcinoma  cells  control  at  0.79  ppm  had  no no  cytotoxic  effect  cells (LS174T),  (LS174T), lung  lung  adenocarcinoma  cells  (A549)  and  breast  cancer  cells  (MCF‐7)  but  weak  cytotoxic  effect  on  human  adenocarcinoma  cells  (A549)  and  breast  cancer  cells  (MCF‐7)  but  weak  cytotoxic  effect  on  human  hepatoma  cells  (SMMC‐7721)  (87.8% cell  cell viability).  viability). AgNPs  AgNPs  could  could  reduce  hepatoma  cells  (SMMC‐7721)  (87.8%  reduce  all  all tested  tested cancer  cancer cells  cells  viability in a dose dependent manner. SMMC‐7721 cells were the most sensitive tumors cells with  viability in a dose dependent manner. SMMC‐7721 cells were the most sensitive tumors cells with  the IC 50 of 27.75 μg/mL thus we chose SMMC‐7721 for further research. The cellular morphology of  the IC 50 of 27.75 μg/mL thus we chose SMMC‐7721 for further research. The cellular morphology of  SMMC‐7721 cells were observed and photographed under microscopy (Figure 8c). The shape of cells  SMMC‐7721 cells were observed and photographed under microscopy (Figure 8c). The shape of cells  was altered obviously when 30 μg/mL AgNPs was applied and a large number of dead cells were  was altered obviously when 30 μg/mL AgNPs was applied and a large number of dead cells were  presented at AgNPs concentration of 40 and 50 μg/mL, which was in accord with the results of 3‐(4,5‐ presented at AgNPs concentration of 40 and 50 μg/mL, which was in accord with the results of 3‐(4,5‐ dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium  bromide  (MTT)  assay  (Figure  7a).  Furthermore,  dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium  bromide  (MTT)  assay  (Figure  7a).  Furthermore,  apoptosis  of  SMMC‐7721  cells  was  measured  by  flow  cytometry  (Figure  9).  Apoptosis  rate  was  apoptosis  of  SMMC‐7721  cells  was  measured  by  flow  cytometry  (Figure  9).  Apoptosis  rate  was 

Nanomaterials 2016, 6, 160

7 of 15

2.4. Cytotoxicity Experiments As shown in Figure 8a, 10% (v/v) callus extracts had no obvious cytotoxicity while AgNO3 control at 0.79 ppm had no cytotoxic effect on human colon adenocarcinoma cells (LS174T), lung adenocarcinoma cells (A549) and breast cancer cells (MCF-7) but weak cytotoxic effect on human hepatoma cells (SMMC-7721) (87.8% cell viability). AgNPs could reduce all tested cancer cells viability in a dose dependent manner. SMMC-7721 cells were the most sensitive tumors cells with the IC50 of 27.75 µg/mL thus we chose SMMC-7721 for further research. The cellular morphology of SMMC-7721 cells were observed and photographed under microscopy (Figure 8c). The shape of cells was altered obviously when 30 µg/mL AgNPs was applied and a large number of dead cells were presented at AgNPs concentration of 40 and 50 µg/mL, which was in accord with the results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Figure 7a). Furthermore, Nanomaterials 2016, 6, 160    7 of 15  apoptosis of SMMC-7721 cells was measured by flow cytometry (Figure 9). Apoptosis rate was increased as the concentration of AgNPs increased. On the other hand, we investigated the cytotoxicity increased  as  the normal concentration  of  AgNPs  increased.  On  the  other  hand,  we  investigated  the  of AgNPs against human liver cells HL-7702. The results indicated AgNPs inhibited the growth cytotoxicity  AgNPs  against  normal  liver  cells  HL‐7702.  The  results  of HL-7702 atof  higher concentration (Figurehuman  8b). IC50 value of AgNPs on HL-7702 cellsindicated  was 81.39AgNPs  µg/mL. inhibited the growth of HL‐7702 at higher concentration (Figure 8b). IC 50 value of AgNPs on HL‐7702  The difference of induced cell viability between cancer cells (SMMC-7721) and normal HL-7702 cells cells was 81.39 μg/mL. The difference of induced cell viability between cancer cells (SMMC‐7721) and  was significant (p < 0.01). normal HL‐7702 cells was significant (p 

Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells.

Plant constituents could act as chelating/reducing or capping agents for synthesis of silver nanoparticles (AgNPs). The green synthesis of AgNPs has b...
4MB Sizes 1 Downloads 16 Views