CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

2133

REVIEW Chemical Constituents and Biological Activities of Pinus Species by Bo Li a ), Yun-Heng Shen* a ), Yi-Ren He a ), and Wei-Dong Zhang* a ) b ) c ) a

) Department of Phytochemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, P. R. China (phone/fax: þ 86-21-81871244 (W.-D. Z.), þ 86-21-81871245 (Y.-H. S.); e-mail: [email protected], e-mail: [email protected]) b ) King Saud University, Riyadh 11451, Saudi Arabia c ) School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Contents 1. Introduction 2. Chemical Constituents 2.1. Terpenoids 2.1.1. Triterpenoids 2.1.2. Diterpenoids 2.1.3. Sesquiterpenoids and Monoterpenoids 2.2. Flavonoids 2.3. Lignans 2.4. Phenols 2.5. Others 3. Biological Activities 3.1. Anti-inflammatory and Analgesic Activities 3.2. Antitumor Activity 3.3. Antibacterial and Antifungal Activities 3.4. Antioxidant Activity 3.5. Antiviral Activity 3.6. Others 4. Conclusions

1. Introduction. – Pinus is a genus with ca. 80 species mainly distributed in the Northern Hemisphere. There are 22 Pinus species and ten varieties in China, several of which have been used as traditional Chinese medicine [1]. Among them, the dried branches with the node or bend of P. tabuliformis Carriere and P. massoniana Lamb. were recorded in Chinese Pharmacopoeia as Lignum Pini Nodi [2]. Lignum Pini Nodi, a valuable medicinal product in China, has been reported for the treatment of cancer, pain, and rheumatism [3]. Recently, much more attention has been paid to the Pinus genus due to its diverse chemical constituents and biological activities. Previous studies of the Pinus genus have led to the identification of numerous chemical constituents. In this review, phytochemical and bioactivity investigations on  2013 Verlag Helvetica Chimica Acta AG, Zrich

2134

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Pinus species over the past decades are compiled, and the compounds isolated from Pinus plants are collected in the Table. 2. Chemical Constituents. – Since 1900, more than 280 compounds have been isolated from the genus Pinus, including terpenoids, flavonoids, lignans, phenols, and some other compounds. Their structures are shown below, and their names and the corresponding plant sources are compiled in the Table. As can be seen, diterpenoids are predominant chemical constituents of Pinus plants. 2.1. Terpenoids. 2.1.1. Triterpenoids (Fig. 1). Thirty-five triterpenoids, 1 – 35, were isolated from Pinus plants [3 – 14]. Eighteen seratane-types, 1 – 18, were mainly obtained from P. armandii and P. monticola. Seventeen lanostane-types, 19 – 35, were found in P. monticola, among which 25,26,27-trinorlanostane-type compounds, 29 – 32, were isolated from P. luchuensis. 2.1.2. Diterpenoids (Fig. 2). Diterpenoids are the main metabolites of this genus. One hundred and thirteen diterpenoids in total, 36 – 148, were isolated from the genus Pinus [11] [15 – 27] [29 – 47] [70] [71]. So far, diterpenoids from the genus Pinus can be divided into three types, i.e., pimarane, labdane, and abietane types. Among these 113 compounds, 36 – 46 belong to pimarane diterpenoids, and 47 – 106 are of abietane type, and 110 – 147 are labdane derivatives. These diterpenoids were mainly isolated from P. massoniana, P. armandii, and P. yunnanensis. So far, only one new diterpenoid glucoside, 107, has been isolated from the AcOEt fraction of the MeOH extract of the needles of P. densiflora. Compound 108 is a novel diterpene with a seven-membered ring, isolated from P. strobus cortex extracts. The macrocyclic diterpene 109 was obtained from P. koraiensis oleoresin. As already known, these macrocyclic diterpenoids are toxic and exhibit diverse physiological activities [28]. 2.1.3. Sesquiterpenoids and Monoterpenoids (Fig. 2). These two classes of compounds mainly occur in oleoresins. Song et al. identified the chemical constituents of several Pinus oleoresins by GC/MS method. Besides two sesquiterpenoids, longifolene (149) and caryophyllene (150), six common monoterpenoids, i.e., a-pinene (151), camphene (152), b-pinene (153), a-myrcene (154), limonene (155), and a-teipinene (156), were found to be the usual constituents of the Pinus plants [49]. Only two monoterpenoid glucosides, 157 and 158, were reported from P. densiflora. 2.2. Flavonoids (Fig. 3). Forty-three flavonoids, 159 – 201, were isolated from Pinus species [5] [11] [36] [43] [48] [50 – 54] [56] [57]. Among these, 159 – 198 are flavones mainly occuring in P. morrisonicola and P. armandii. Three biflavones, 199 – 200, and one triflavone, 201, were isolated from P. sylvestris. 2.3. Lignans (Fig. 4). Thirty-seven lignans, 202 – 238, were isolated from Pinus species [5] [11] [15] [53] [58 – 66] [68]. Two benzodioxanes, 202 and 203, eleven benzofurans, 205 – 215, three lignanolides, 216 – 218, seven tetrahydrofurans, 219 – 225, eight oligomerics 226 – 228 and 230 – 234, one diepoxylignan, 229, three arylnaphthalenes, 235 – 237, and one dibenzocyclooctene, 238, were obtained from P. massoniana. 2.4. Phenols (Fig. 4). Thirty-six phenol and anisole derivatives, 239 – 274, were isolated from the genus Pinus [11] [15 – 17] [50] [56] [58] [59] [65] [67]. 2.5. Others (Fig. 4). One coumarin, 275, five fatty acids, 276 – 280, and two steroids, 281 and 282, were isolated from several Pinus species [16] [36] [43] [67] [69].

Compound class and name Triterpenoids Serrat-14-ene-3b,21a-diol Serrat-14-ene-3b,21b-diol Serrat-14-ene-3a,21b-diol 3b-Methoxyserrat-14-en-21a-ol

21a-Acetoxy-3b-methoxyserrat-14-ene 3b-Methoxyserrat-14-en-21-one

30-Hydroxy-3b-methoxyserrat-14-en-21-one

3b-Methoxy-21-oxoserrat-14-en-30-al 21a-Acetoxy-3b-methoxyserrat-14-en-30-al 3b-Methoxy-30-norserrat-14-en-21-one 3b-Hydroxyserrat-14-en-21-one

Serratriol Serrat-14-ene-3,21-dione 3b,21a-Dimethoxyserrat-14-ene 29-Acetoxy-3b-methoxyserrat-14-en-21a-ol 3b-Methoxyserrat-14-ene-21a,30-diol 3b-Methoxyserrat-14-ene-21a,29-diol

No.

1

2

3 4

5 6

7

8 9 10

11

12 13 14 15

16 17

Table. Chemical Constituents from Pinus Species

P. armandii P. monticola P. armandii P. luchuensis P. armandii P. armandii P. luchuensis P. taiwanensis P. armandii P. armandii P. luchuensis P. stroubs P. massoniana P. armandii P. taiwanensis P. strobus P. massoniana P. armandii P. armandii P. armandii P. monticola P. luchuensis P. taiwanensis P. massoniana P. monticola P. luchuensis P. luchuensis P. luchuensis P. yunnanensis P. monticola P. monticola

Source

[4] [5] [6] [4] [5] [7] [4] [5] [4] [5] [8] [7] [9] [4] [5] [4] [5] [8] [10] [11] [4] [5] [9] [10] [11] [4] [5] [4] [5] [4] [5] [6] [8] [7] [9] [11] [6] [8] [8] [7] [12] [6] [6]

Ref.

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013) 2135

[15] [16] [17] [11] [18] [19] [20] [21] [22] [18] [19] [22]

P. strobus P. taeda P. armandii P. massoniana P. armandii P. luchuensis P. koraiensis P. kesiya P. armandii P. kesiya

(24S )-5a-Lanost-9(11)-ene-3b,24,25-triol 3b-Methoxy-5a-lanost-9(11)-en-24-one (24S )-3b-Methoxy-5a-lanosta-9(11),25-dien-24-ol 5a-Lanosta-9(11),25-diene-3a,24-diol 3b-Methoxy-5a-lanost-9(11)-ene-22(or 23),25-diol 3b-Methoxy-26,27-dinor-5a-lanost-9(11)-en-24-one (24S )-3b-Methoxy-24,25-(methylmethylenedioxy)-5a-lanost-9(11)-ene 3b-Methoxy-24,25-( R-methylenedioxy)-5a-lanost-9(11)-ene ( R ¼ C22H45O ) 3b-Methoxy-24,25-( R-methylenedioxy)-5a-lanost-9(11)-ene ( R ¼ C22H43 ) 3a-Hydroxy-25,26,27-trinor-5a-lanost-9(11)-en-24-oic acid 3a-Methoxy-25,26,27-trinor-5a-lanost-9(11)-en-24-oic acid 3b-Methoxy-25,26,27-trinor-5a-lanost-9(11)-en-24-oic acid 25,26,27-Trinor-3-oxo-5a-lanost-9(11)-en-24-oic acid Pinusyunnanol (5a,24S )-3-Oxolanost-9(11)-ene-24,25-diol (3a,5a,24S )-Lanost-9(11)-ene-3,24,25-triol Diterpenoids Isopimaric acid

Sandaracopimaric acid

Isopimarol Isodextropimaric acid Pimarol

20

21 22 23 24 25 26

27 28 29 30 31 32 33 34 35

37

38 39 40

36

[6] [7] [13] [7] [13] [13] [13] [13] [13] [13] [5] [13] [13] [13] [14] [14] [14] [14] [12] [7] [7]

18 19

Ref.

Source P. monticola P. luchuensis P. monticola P. luchuensis P. monticola P. monticola P. monticola P. monticola P. monticola P. monticola P. armandii P. monticola P. monticola P. monticola P. luchuensis P. luchuensis P. luchuensis P. luchuensis P. yunnanensis P. luchuensis P. luchuensis

Compound class and name 3b-Methoxyserrat-14-ene-21b,29-diol (24S )-3b-Methoxy-5a-lanost-9(11)-ene-24,25-diol

No.

Table (cont.)

2136 CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Source P. massoniana P. massoniana P. taeda P. armandii P. yunnanensis P. massoniana P. massoniana P. massoniana P. sylvestris P. nigra P. pumila P. massoniana P. massoniana P. massoniana P. massoniana P. yunnanensis P. densiflora P. strobus P. taeda P. massoniana P. armandii P. yunnanensis P. densiflora P. koraiensis P. luchuensis P. kesiya P. massoniana P. densiflora P. massoniana P. sylvestris P. massoniana P. massoniana

Compound class and name 2b-Hydroxypimara-8(14),15-dien-18-oic acid Pimaric acid

Pimara-8(14),15-dien-18-al 3b-Hydroxypimara-8(14),15-dien-18-ol ent-8,13-Epoxylabd-14-en-19-oic acid Manoyl oxide acid Abietadiene Levopimaric acid Palustric acid Neoabietic acid Abietic acid Dehydroabietane Abieta-8,11,13-trien-7-ol Dehydroabietic acid

7-Oxodehydroabietic acid 7a-Hydroxydehydroabietan-18-oic acid 7b-Hydroxydehydroabietan-18-oic acid Abieta-6,8,11,13-tetraene-15,19-diol

No.

41 42

43 44 45 46

47 48 49 50 51 52 53 54

55

56

57 58

Table (cont.) Ref. [23] [11] [23] [24] [25] [16] [26] [27] [25] [23] [28] [29] [30] [31] [25] [25] [25] [25] [27] [32] [15] [16] [23] [24] [18] [19] [26] [33] [32] [34] [21] [20] [22] [23] [24] [25] [32] [23] [24] [25] [35] [23] [25] [23]

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013) 2137

Source P. yunnanensis P. luchuensis P. massoniana P. massoniana P. armandii P. yunnanensis P. densiflora P. koraiensis P. kesiya P. kesiya P. yunnanensis P. massoniana P. armandii P. koraiensis P. yunnanensis P. yunnanensis P. yunnanensis P. yunnanensis P. densiflora P. yunnanensis P. yunnanensis P. yunnanensis P. yunnanensis P. armandii P. yunnanensis P. taeda P. taeda P. massoniana P. armandii P. massoniana P. yunnanensis P. yunnanensis

Compound class and name Abieta-6,8,11,13-tetraene-15,18-diol 2b-Hydroxydehydroabietic acid 15-Hydroxydehydroabietic acid

12-Hydroxydehydroabietic acid Abiesadine N 7b-Hydroxydehydroabiet-15-enoic acid 4-Hydroperoxy-19-norabieta-8,11,13-triene Methyl dehydroabietate 15-Hydroxy-7-oxodehydroabietic acid 15,18-Dihydroxyabieta-8,11,13-trien-7-one 4,15-Dihydroxy-18-norabieta-8,11,13-trien-7-one 18-Hydroxyabieta-8,11,13-trien-7-one 4-Hydroxy-19-norabieta-8,11,13-trien-7-one Abieta-8,11,13-triene-7a,15,18-triol Methyl 7a,15-dihydroxydehydroabietate 7a,15-Dihydroxypodocarp-8(14)-en-13-one 12a,13b-Dihydroxy-7-oxoabiet-8(14)-en-18-oic acid 12a,13b-Dihydroxyabiet-8(14)-en-18-oic acid 7a,9a,11a-Trihydroxyabiet-8(14)-en-18-oic acid 13b-Ethoxy-7-oxoabiet-8(14)-en-18-oic acid 13b-Hydroxy-7-oxoabiet-8(14)-en-18-oic acid Podocarp-8(14)-ene-7,13-dion-18-oic acid Daturabietatriene 18-Norabieta-8,11,13-triene-4,15-diol

No.

59

60 61

62 63 64 65 66 67 68 69 70

71 72 73 74 75

76 77 78 79 80 81 82

Table (cont.)

[33] [20] [25] [11] [23] [25] [17 – 19] [36] [33] [27] [32] [21] [22] [22] [33] [23] [17] [34] [33] [33] [33] [33] [32] [33] [33] [33] [33] [18] [37] [27] [16] [16] [23] [18] [37] [25] [33] [33]

Ref.

2138 CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Source P. yunnanensis P. yunnanensis P. densiflora P. yunnanensis P. densiflora P. massoniana P. massoniana P. massoniana P. kesiya P. armandii P. koraiensis P. yunnanensis P. massoniana P. yunnanensis P. yunnanensis P. armandii P. banksiana P. koraiensis P. koraiensis P. koraiensis P. sibirica P. kesiya P. massoniana P. yunnanensis P. massoniana P. massoniana P. massoniana P. banksiana P. koraiensis P. massoniana P. armandii P. koraiensis

Compound class and name Abiesadine I Dehydroabietinol 18-Norabieta-8,11,13-trien-4-ol 12a-Hydroxydehyroabietic acid Abieta-7,13,15-trien-18-oic acid 15-Hydroxy-12-oxoabietic acid 15-Hydroxyabietic acid 12a-Methoxyabietic acid

12b-Methoxyabietic acid Pinyunin A Pinyunin B 7,8-Dihydro-8,15-dehydroxyabietic acid 9,10-Secoabieta-8,11,13-trien-18,10-olide 13b,15-Dihydroxy-7-oxoabiet-8(14)-en-18-oic acid 12a,13b,15-Trihydroxy-7-oxoabiet-8(14)-en-18-oic acid Pinusenoid Abiet-8(14)-en-18-ol 9a,13a-endoperoxide 8a,12a-Epoxyabiet-13(14)-en-18-oic acid 13-Hydroxypodocarpa-8,11,13-trien-18-oic acid 12-Hydroxypodocarpa-8,11,13-trien-18-oic acid 7b-Hydroxy-13-oxopodocarp-8(14)-en-18-oic acid 7a-Hydroxy-13-oxopodocarp-8(14)-en-15-oic acid

13-Oxopodocarp-8(14)-en-18-oic acid

No.

83 84

85

86 87 88 89 90

91 92 93 94 95 96 97 98 99 100 101

102 103 104

105

Table (cont.)

[33] [33] [32] [33] [32] [11] [25] [25] [25] [22] [18] [19] [21] [27] [11] [25] [27] [27] [36] [38] [39] [39] [40] [41] [22] [25] [27] [25] [23] [23] [38] [40] [23] [25] [18] [37] [21]

Ref.

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013) 2139

8a-Hydroxy-12-oxoabiet-13(14)-en-18-oic acid 9a,13a-Epoxy-8b,14b-dihydroxyabietic acid 18-O-d-glucopyranoside ( ¼ 1-O-[(13b,14b)-8,14-dihydroxy-18-oxo-9,13-epoxyabietan-18-yl]-b-d-glucopyranose) (14S )-14,17-Cyclolabda-8(17),12-dien-18-oic acid Isocembrol (E )-Communic acid 4-Epicommunic acid

Elliotinol (E )-19-Acetoxylabda-8(14),12,15-triene Isoagatholal Agathadiol (E )-15-Norlabda-8(17),12-diene-13,19-dioic acid (E )-15-Nor-14-oxolabda-8(17),12-dien-19-oic acid (E )-15-Nor-14-oxolabda-8(17),12-dien-18-oic acid 13-Epimanool (E )-Labda-8(17),13-dien-15-al (Z )-Labda-8(17),13-dien-15-al Sciadopovate Labda-13(16),14-dien-8-ol Pinifolic acid 4-Epiimbricataloic acid

15-Acetoxylabd-8(17)-en-18-oic acid 15-Ethyl 18-methyl pinifolate 18-Acetoxylabd-8(17)-en-15-oic acid 8,14-Dioxo-8,14-secoabiet-13(15)-en-18-oic acid 15-Norpinifolic acid

106 107

112 113 114 115 116 117 118 119 120 121 122 123 124

125

126 127 128 129 130

108 109 110 111

Compound class and name

No.

Table (cont.) Ref. [27] [42] [43] [10] [34] [20] [30] [32] [44] [23] [23] [41] [34] [20] [20] [32] [23] [31] [31] [45] [30] [30] [35] [46] [30] [34] [35] [46] [35] [47] [46] [23] [46]

Source P. yunnanensis P. sylvestris P. densiflora P. strobus P. koraiensis P. luchuensis P. nigra P. densiflora P. radiata P. massoniana P. massoniana P. sibirica P. koraiensis P. luchuensis P. luchuensis P. densiflora P. massoniana P. pumila P. pumila P. sibirica P. nigra P. nigra P. sylvestris P. nigra P. koraiensis P. sylvestris P. sylvestris P. sylvestris P. sylvestris P. massoniana P. sylvestris

2140 CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

[49] [49] [49] [49] [49] [49] [49] [49] [43]

pinus plants pinus plants pinus plants pinus plants pinus plants pinus plants pinus plants pinus plants P. densiflora

Copalic acid (13E )-18-Hydroxylabda-8(17),13-dien-15-yl acetate (13E )-18-Acetoxylabda-8(17),13-dien-15-oic acid (13E )-3b-Hydroxylabda-8(17),13-dien-15-oic acid Demethyl pinusolide Monomethyl pinifolate Dimethyl pinifolate Methyl 15-methyl-15-oxolabd-8(17)-en-18-oate 4-Epiimbricataloate 19-Hydroxy-15,16-dinorlabd-8(17)-en-13-one

15,16-Dinorlabd-8(17)-en-13-one 16-Hydroxy-14-oxo-15-norlabd-8-en-19-oic acid Pinusolide 16-Hydroxylabda-8(17),13-diene-15,19-dioic acid butenolide Lambertianic acid Labda-8(17),13-dien-16,14-olid-18-oic acid 15-Hydroxylabda-8(17),13-dien-16,14-olid-18-oic acid Sesquiterpenoids (þ)-Longifolene Caryophyllene Monoterpenoids a-Pinene b-Pinene Camphene a-Myrcene Limonene a-Teipinene Bornyl 6-O-a-d-arabinofuranosyl-(1 ! 6)-b-d-glucopyranoside

132 133 134 135 136 137 138 139 140 141

142 143 144 145 146 147 148

151 152 153 154 155 156 157

149 150

[36] [45] [15] [47] [46] [46] [17] [32] [30] [30] [30] [38] [20] [30] [48] [36] [17] [36] [17] [36] [18] [36] [17] [17]

P. armandii P. sibirica P. strobus P. sylvestris P. sylvestris P. sylvestris P. armandii P. sylvestris P. nigra P. nigra P. nigra P. banksiana P. luchuensis P. nigra P. pumila P. armandii P. armandii P. armandii P. armandii P. armandii P. armandii

Ref.

Source

Compound class and name (þ)-Isocupressic acid

No.

131

Table (cont.)

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013) 2141

[50] [51] [15] [50] [51] [50] [51] [50] [51] [15] [50] [51] [50] [51] [50] [51] [51] [51] [51] [51] [51] [51] [51] [52] [53] [54] [54] [54] [54] [54] [54] [55]

Tectochrysin

Apigenin Pinocembrin Pinostrobin

Pinobanksin Pinobanksin 3-acetate Strobochrysin Cryptochrysin Genkwanin Izalpinin Galangin Poriol 3-Acetoxy-5,7-dihydroxy-6-methylflavanone 3,5,7-Trihydroxy-6-methylflavanone 4’,5,7,8-Tetrahydroxy-3-methoxy-6-methylflavone 8-O-b-d-glucopyranoside Kaempferol 3-O-b-d-(6-O-acetylgalactopyranoside) 3’,5-Dihydroxy-4’-methoxyflavanone 7-O-a-l-rhamnopyranosyl-(1 ! 6)-b-d-glucopyranoside 3’,5-Dihydroxy-4’-methoxyflavanone 7-O-b-d-glucopyranosyl-(1 ! 2)-a-l-rhamnopyranoside 4’,5-Dihydroxyflavanone 7-O-a-l-rhamnopyranosyl-(1 ! 2)-b-d-glucopyranoside Luteolin Luteolin 7-O-b-glucopyranoside

160

161

162

163

164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

159

P. armandii P. morrisonicola P. strobus P. armandii P. morrisonicola P. armandii P. morrisonicola P. armandii P. morrisonicola P. strobus P. armandii P. morrisonicola P. armandii P. morrisonicola P. armandii P. morrisonicola P. morrisonicola P. morrisonicola P. morrisonicola P. morrisonicola P. morrisonicola P. morrisonicola P. morrisonicola P. densiflora P. densiflora P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana

Ref. [43]

Source P. densiflora

Compound class and name Bornyl 6-O-b-d-apiofuranosyl-(1 ! 6)-b-d-glucopyranoside Flavonoids Chrysin

No.

158

Table (cont.)

2142 CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

[58] [59] [53] [53] [60] [5] [60] [60]

P. massoniana P. koraiensis P. densiflora P. densiflora P. massoniana P. armandii P. massoniana P. massoniana

(þ)-Catechin 3-b-d-glucopyranoside 3’-O-Methylcatechin (2R,3R )-Dihydroquercetin (2R,3R )-Dihydroquercetin 3’-O-b-d-glucopyranoside (2R,3R )-Dihydroquercetin 7-O-b-d-glucopyranoside Pinocembrin 6-Methyltectochrysin Quercetin 3-O-b-d-glucopyranoside 6-Methylpinostrobin 6-Methylchrysin 6-Methylkaempferol 3-O-b-d-glucopyranoside Kaempferol 3-O-b-d-glucopyranoside Kaempferol 3-O-a-l-rhamnopyranoside ()-Naringenin 4’,7-dimethyl ether Proanthocyanidin B1 Proanthocyanidin B2 Proanthocyanidin B3 Epicatechin-(4b ! 8)-epicatechin-(4b ! 8)-catechin Lignans Massonianoside E Cupressoside A ()-Shikimic acid Cedrusin Massonianoside B

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

203 204

205

206

202

[54] [55] [54] [5] [56] [53] [56] [56] [56] [56] [56] [57] [15] [53] [15] [15] [43] [43] [56] [36] [56] [56] [56] [56]

P. massoniana P. massoniana P. armandii P. sylvestris P. densiflora P. sylvestris P. sylvestris P. sylvestris P. sylvestris P. sylvestris P. massoniana P. strobus P. densiflora P. strobus P. strobus P. densiflora P. densiflora P. sylvestris P. armandii P. sylvestris P. sylvestris P. sylvestris P. sylvestris

Ref.

Source

Compound class and name Quercetin Taxifolin (þ)-Catechin

No.

181 182 183

Table (cont.)

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013) 2143

[61] [61] [62] [61] [63] [64] [65] [64] [11] [57] [11] [36] [59] [64] [58] [62] [15] [66] [66] [66] [66] [66] [11] [66] [11] [67] [27] [11] [36] [59] [68]

P. massoniana P. massoniana P. koraiensis P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana P. densiflora P. massoniana P. armandii P. koraiensis P. massoniana P. massoniana P. koraiensis P. strobus P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana P. yunnanensis P. massoniana P. armandii P. koraiensis P. roxburghii

Cedrusin 4-O-b-d-glucopyranoside (7S,8R)-4,9,9’-Trihydroxy-3,3’-dimethoxy-7,8-dihydrobenzofuran-1’-propylneoligan Massonianoside D (7S,8R)-4,9’-Dihydroxy-3,3’-dimethoxy-7,8-dihydrobenzofuran-1’propylneoligan-9-O-b-d-glucopyranoside Massonianoid A Balanophonin Icariside E4 Matairesinol

4,4’,8-Trihydroxy-4,4’-dimethoxy-9-lignanolide 4,4’,8,8’,9-Pentahydroxy-3,3’-dimethoxy-7,9’-monoepoxylignan (þ)-Lariciresinol Vladinol D (þ)-Lariciresinol 9’-p-caffeinate (þ)-7-Hydroxylariciresinol 9’-p-coumarate (þ)-Lariciresinol 9’-p-coumarate Tanegool Sesquimarocanol A 1,2-Bis(4-hydroxy-3-methoxyphenyl)propane-1,3-diol Secoisolariciresinol 2-[2,3-Dihydroxy-5-(3-hydroxypropyl)phenyl]-1-(4-hydroxy-3-methoxyphenyl)propane-1,3-diol Pinoresinol

209 210 211 212

213 214 215 216

217 218

219

220 221 222 223 224 225 226 227 228 229

Ref.

Source

Compound class and name Massonianoside C Massonianoside A

No.

207 208

Table (cont.)

2144 CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

[62] [62] [62] [56] [53] [64] [66] [53] [64] [62] [62] [64] [11] [15] [16] [17] [50] [15] [17] [50] [17] [50] [11] [56] [56] [11] [50] [15] [17] [50] [15]

P. koraiensis P. koraiensis P. sylvestris P. densiflora P. massoniana P. densiflora P. massoniana P. koraiensis P. koraiensis P. massoniana P. massoniana P. strobus P. taeda P. armandii P. strobus P. armandii P. armandii P. massoniana P. sylvestris P. sylvestris P. massoniana P. armandii P. strobus P. armandii P. strobus

(þ)-Isolariciresinol 9-O-b-d-xylopyranoside

(þ)-Isolariciresinol 9-O-b-d-glucopyranoside Schizandrin Phenols (E )-Pinosylvin monomethyl ether

(E )-Pinosylvin dimethyl ether (Z )-Pinosylvin dimethyl ether Pinosylvin (E )-3,4’,5-Trihydroxystilbene 4’-O-b-d-glucopyranoside (E )-3,4’-Dihydroxy-5-methoxystilbene 4’-O-b-d-glucopyranoside (E )-4-Hydroxy-3’-methoxystilbene Dihydropinosylvin Dihydropinosylvin monomethyl ether Dihydropinosylvin dimethyl ether

236

237 238

240

241 242 243 244 245 246 247

248

239

234 235

233

232

231

P. koraiensis

Ref. [62]

Source P. koraiensis

Compound class and name (7R,8S )-erythro-4,7,9-Trihydroxy-3,3’-dimethoxy-8-O-4’-neolignan 9’-O-al-rhamnopyranoside (7S,8S )-threo-4,7,9-Trihydroxy-3,3’-dimethoxy-8-O-4’-neolignan 9’-O-al-rhamnopyranoside (7S,8S )-threo-3’,4,7,9-Tetrahydroxy-3-methoxy-8-O-4’-neolignan 9’-O-al-rhamnopyranoside (7R,8S )-erythro-3’,4,9,9’-Tetrahydroxy-3-methoxy-8-O-4’-neolignan 7-O-bd-glucopyranoside 3’,7,9,9’-Tetrahydroxy-3-methoxy-8-O-4’-neolignan 4-O-b-d-xylopyranoside (þ)-Isolariciresinol

No.

230

Table (cont.)

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013) 2145

(E )-Pinosylvin oxide dimethyl ether (E )-Coniferyl b-d-glucopyranoside (E )-Coumaric acid 4-O-b-d-glucopyranoside (E )-Ferulic acid 4-O-b-d-glucopyranoside Coniferaldehyde Ferulic acid (1R,2R )-1-(4-Hydroxyphenyl)glycerin (1S,2S )-1-(4-Hydroxyphenyl)glycerin Dihydroconiferin 3,4’-Dihydroxy-3’-methoxypropiophenone 3-O-b-d-glucopyranoside (E )-Ferulic acid tetracosyl ester Tetracosyl (2E )-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoate Protocatechuic acid Vanillic acid Hydroquinone 2-O-[4’-(a-hydroxypropyl)-2’-methoxyphenyl]-1-O-b-d-xylopyranosylglycerol p-Hydroxybenzoic acid 4-O-b-d-glucopyranoside Vanillic acid 4-O-b-d-glucopyranoside 4-(4-Hydroxyphenyl)butan-2-ol 4-(4-Hydroxy-3-methoxyphenyl)butan-2-ol 4-(4-Hydroxy-3-methoxyphenyl)butan-2-one Planchol E Epirhododendrin Frambinone Bornyl p-coumarate Salicifoliol Others 7-Hydroxycoumarin (5Z,9Z,12Z )-Octadeca-5,9,12-trienoic acid

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

268 269 270 271 272 273 274

276

275

Compound class and name

No.

Table (cont.) Ref. [50] [50] [56] [56] [56] [11] [55] [11] [11] [56] [56] [11] [11] [67] [65] [65] [56] [56] [56] [59] [67] [67] [58] [56] [59] [59] [59] [59] [36] [67] [69]

Source P. armandii P. armandii P. sylvestris P. sylvestris P. sylvestris P. massoniana P. massoniana P. massoniana P. massoniana P. sylvestris P. sylvestris P. massoniana P. massoniana P. massoniana P. massoniana P. massoniana P. sylvestris P. sylvestris P. sylvestris P. koraiensis P. massoniana P. massoniana P. massoniana P. sylvestris P. koraiensis P. koraiensis P. koraiensis P. koraiensis P. armandii P. massoniana P. koraiensis

2146 CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Source P. koraiensis P. koraiensis P. koraiensis P. koraiensis P. taeda P. koraiensis P. taeda P. koraiensis

Compound class and name Palmitic acid Stearic acid Oleic acid Linoleic acid b-Sitosterol b-Sitosterol 3-O-b-d-glucopyranoside

No.

277 278 279 280 281

282

Table (cont.)

[69] [69] [69] [69] [16] [59] [41] [59]

Ref.

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013) 2147

2148

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Fig. 1. Triterpenoids from Pinus species

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

2149

Fig. 1 (cont.)

3. Biological Activities. – 3.1. Anti-Inflammatory and Analgesic Activities. The H2O extract of P. massoniana leaves can significantly increase pain threshold value in mice and reduce the number of mice writhing. Also, ear swelling and the weight of cotton ball granuloma, was used as nonspecific inflammation models [72]. The volatile oils of the leaves of P. pumila, when administered po or injected ip can remarkably inhibit the mice central nervous system, with the ip LD50 value of 0.577  0.056 ml/kg in mice [73]. The H2O extract of P. armandii demonstrated 50.8% inhibition rate at a dose of 100 mg/ kg, in croton oil-induced acute ear edema mice model [18]. The diterpenoids pinyunins A and B (92 and 93, resp.), and a new lignan (228) exhibited high inhibitions against COX-2 with inhibition rates of 84.83, 83.71, and 88.25%, respectively [40]. The flavonols 175 and 190 showed significant inhibitory effects against NO production (IC50 26.8 and 27.1 mg/ml, resp.) and moderate inhibitions against PGE2 production (IC50 56.2 and 24.8 mg/ml, resp.) [48]. 3.2. Antitumor Activity. In 1987, Sakagami et al. reported that the hot-water pine cone extract (PCE) of P. parviflora dose-dependently suppressed both solid and ascites tumor cells transplanted into various mice [74]. Two years later, Kurakata et al. reported that an acidic PCE (Fr. V) of P. parviflora Sieb. et Zucc. significantly stimulated DNA synthesis of isolated splenocytes from both mice and rat [75]. Soon after, Nagasawa et al. reported that intravenous or the oral administration of PCE of P. parviflora (Fr. VI) and the related synthetic agent (DHP-FA) to lactating SHN mice prevented increase of milk level of mouse mammary tumor virus (MMTV) from day 7 to day 14 of lactation. This was the first report on the inhibition of milk MMTV of mice in vivo [76]. The bark extracts of P. pinea and P. sylvestris showed strong cytotoxicities against human prostate (PC-3, DU 145, and LNCaP) and breast adenocarcinoma (MCF-7) [77]. The P. massoniana bark extract exhibited antitumor activity in vivo with a 42.88 – 69.94% reduction rate of tumor weight in H22 tumor-implanted mice, possibly through caspase-dependent pathway [78]. Procyanidins from P. koraiensis bark showed inhibitory effects against growth and expression of PCNA and TNF-a in mice with U14 cervical cancer [79]. Natural phenolic acids and polyphenols, in particular flavonoids from P. maritime bark extract, exhibited strong inhibitory activities against the growth of cancer cells in skin cancer models induced by UV radiation (UVR) or combination of UVR and 7,12-dimethylbenz[a]anthracene [80].

2150

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Fig. 2. Diterpenoids, sesquiterpenoids, and monoterpenoids from Pinus species

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Fig. 2 (cont.)

2151

2152

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Fig. 2 (cont.)

Two compounds, 127 and 130, isolated from P. sylvestris showed significant antitumor activities [46] [47]. In 2010, Yang et al. reported that 3b-hydroxypimara8(14),15-dien-18-ol (44), elliotinol (112), (E)-19-acetoxy-8(14),12,5-labdatriene (113), possess strong cytotoxicities against A431 and A549 cancer cells with the IC50 values of 0.38, 1.60, 4.74 mm, and 2.00, 16.44, 19.62 mm, respectively [23]. Compound 34 isolated from P. luchuensis showed 54% inhibition rate against Topo II at the concentration of 200 mm [7].

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Fig. 3. Flavonoids from Pinus species

2153

2154

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Fig. 3 (cont.)

3.3. Antibacterial and Antifungal Activities. The antimicrobial activity of pine needles was tested and found effective against the growth of ammon putrefied microbes in food [81].

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

Fig. 4. Lignans, phenols, and other chemical constituents from Pinus species

2155

2156

Fig. 4 (cont.)

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

2157

Fig. 4 (cont.)

The aqueous and alcoholic extracts of P. roxburghii leave, stem, bark, male cone, and female cone were tested for growth inhibitory activity against the bacterial plant pathogen Agrobacterium tumefaciens and four human pathogens, Escherichia coli, Salmonella arizonae, S. typhi, and Staphylococcus aureus [82]. The essential oils of P. densiflora (EPDN) and P. thungergii needles (EPTN) exhibited antibacterial activities. The minimum inhibitory concentrations (MICs) of EPDN and EPTN for Klebsiella pneumoniae, Shigella flexneri, and Proteus vulgaris were less than 0.4 mg/ml [83]. In another study, bioassay-guided isolation of the aqueous MeOH extract of P. densiflora afforded nine antibacterial and antifungal diterpenes, 53 – 55, 61, 70, 84, 85, 110, and 118 [32]. Compound 36, isolated from the immature cones of P. nigra, showed inhibitory effects against multidrug-resistant and methicillin-resistant Staphylococcus aureus, with the MIC values in the range of 32 – 64 mg/ml comparable to that of abietic acid (MICs 64 mg/ml) [84]. In 1993, Yamada and Ito reported that P. strobus could accumulate antifungal compounds 164, 190, 239, and 242 against Cladosporium herbarum in its xylem [85]. Compounds 239 and 247 could obviously inhibit the growth of five whiterot fungi strains, and have lacease activities [57] [86]. Compound 239 totally inhibited three fungi strains at 0.64 mm, while 247 showed complete inhibition against Fomitopsis pinicola at 0.80 mm [17]. 3.4. Antioxidant Activity. In a preliminary investigation, the extracts of several Pinus species showed potential antioxidant activities [11] [84] [87 – 94]. Park et al. reported that proanthocyanidins and catechins (183) from the hot water extract of pine needles (P. densiflora) exhibited strong antioxidant activities [95]. In another study, Su et al. reported that the total phenolic acid of P. koraiensis seed extract showed remarkable scavenging activity for DPPH (EC50 0.023  0.004 mg/ml), OH  (EC50 0.391  0.055 mg/ml), O 2 (EC50 4.37  0.19 mg/ml), as well as a high and dose-dependent reducing power. The results indicated that intragastric administration of the extract increased levels of superoxide dismutase and glutathione, and decrease malondialdehyde content [96]. Compounds 194 and 195 showed strong ONOO  scavenging activities with IC50 values of 3.86  0.41 and 4.02  0.18 mm, respectively (positive control, l-penicillamine; IC50 3.04  0.74 mm) [43]. 3.5. Antiviral Activity. Extracts of Pinus plants have been widely reported to exhibit antiviral activity [97 – 100]. Recently, Wei et al. reported that the pollen polysaccharide of P. massoniana could enhance immune response of rabbit haemorrhagic tissue inactivated vaccine [101].

2158

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

3.6. Others. Pine needles represent an important traditional Chinese medicine. A pharmacologic study showed that it could reduce blood lipid and blood pressure [102] [103]. By ip injection and po administration, pine needles can inhibit mutagenic toxicity [104]. Luteolin-7-O-glucopyranoside (180), quercetin (181), ferulic acid (254), isolated from P. massoniana pine needles, showed significant antiplatelet aggression activities [55]. Unsaturated fatty acids separated from the seed kernel oil of P. armandii showed antilipidic effects [105]. Pinolenic acid of P. Koraiensis seed oil exhibited a blood pressure-reducing effect [106]. 4. Conclusions. – The genus Pinus includes ca. 80 species, some of which have been used in traditional medicine. P. tabulieformis and P. massoniana have a long history in Chinese medicine, and are recorded in Chinese Pharmacopoeia as herbal antirheumatic, analgesic, and anticancer medicine. The chemical investigations on Pinus species have revealed that many compounds from Pinus species have diverse bioactivities. However, there are still several Pinus species that have escaped attention. In the future, it will be important and meaningful to intensify chemical and pharmacological investigation of Pinus species. This work was supported by the Program NCET Foundation, NSFC (30725045), partially supported by Global Research Network for Medicinal Plants (GRNMP) and King Saud University, Shanghai Leading Academic Discipline Project (B906), FP7-PEOPLE-IRSES-2008 (TCMCANCER Project 230232), Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products (10DZ2251300), and the Scientific Foundation of Shanghai China (09DZ1975700, 09DZ1971500, 10DZ1971700, 11DZ1970601, and 11DZ1970602).

REFERENCES [1] W. C. Wang, Flora of China, Science Press, Beijing, 1990, Vol. 7, p. 253. [2] China Pharmacopoeia Committee, Pharmacopoeia of the Peoples Republic of China, Chinese Medicine Science and Technology Press, 2010, Part I, p. 211. [3] L. L. Zhang, Ph.D. Thesis, Peking Union Medical College, Beijing, 2005. [4] J. M. Fang, W. Y. Tsai, Y. S. Cheng, Phytochemistry 1991, 30, 1333. [5] J. M. Fang, W. Y. Tsai, Y. S. Cheng, J. Chin. Chem. Soc. 1991, 38, 61. [6] H. C. Anthony, A. N. Bhimsen, W. R. John, Tetrahedron 1984, 40, 4217. [7] S. I. Wada, A. Lida, R. Tanaka, Planta Med. 2001, 67, 659. [8] Y. S. Cheng, E. H. T. Chen, G. J. M. Fang, J. Chin. Chem. Soc. 1975, 22, 341. [9] Y. S. Cheng, Y. L. Chao, J. Chin. Chem. Soc. 1979, 26, 163. [10] D. F. Zinkel, B. B. Evans, Phytochemistry 1972, 11, 3387. [11] J. Q. Yang, Master Thesis, Hainan University, 2008. [12] B. Wang, J. Ju, X. F. He, T. Yuan, J. M. Yue, Helv. Chim. Acta 2010, 93, 490. [13] J. P. Kutney, G. Eigendorf, B. R. Worth, J. W. Rowe, A. H. Conner, B. A. Nagasampagi, Helv. Chim. Acta 1981, 64, 1183. [14] S. I. Wada, R. Tanaka, J. Nat. Prod. 2000, 63, 1055. [15] M. G. Carvalho, D. C. Cranchin, A. G. Carvalho, J. Braz. Chem. Soc. 1996, 7, 187. [16] M. G. Carvalho, V. M. Rumjnek, M. J. S. Lopes, A. G. Carvalho, Phytochemistry 1998, 49, 1101. [17] Y. X. Zhao, L. Zhou, L. Guo, X. D. Luo, J. Zhou, J. Asian Nat. Prod. Res. 2005, 7, 259. [18] X. Yang, Ph.D. Thesis, Jiangnan University, Wuxi, 2005. [19] X. Yang, Y. Ding, D. M. Zhang, Z. H. Sun, China J. Chin. Mater. Med. 2005, 30, 518. [20] T. Minami, S. I. Wada, H. Tokuda, G. Tanabe, O. Muraoka, R. Tanaka, J. Nat. Prod. 2002, 65, 1921. [21] X. Yang, Y. C. Zhang, H. Zhang, J. Wang, China J. Chin. Med. Mater. 2008, 31, 53.

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

[22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71]

2159

Y. Chen, M. H. Qiu, K. Gu, L. Zhou, Z. R. Li, Acta Bot. Yunnan. 2006, 28, 23. N. Y. Yang, L. Liu, W. W. Tao, J. A. Duan, L. J. Tian, Phytochemistry 2010, 71, 1528. H. T. A. Cheung, S. L. Fu, M. A. Smal, Arzneim. Forsch./Drug Res. 1994, 44, 17. H. T. Cheung, T. Miyase, M. P. Lenguyen, M. A. Smal, Tetrahedron 1993, 49, 7903. J. M. Fang, W. C. Su, W. C. Liang, Y. S. Cheng, J. Chin. Chem. Soc. 1989, 36, 483. T. Feng, X. H. Cai, Q. G. Tan, X. D. Luo, Z. Naturforsch., B 2010, 65, 765. R. S. Xu, Natural Products Chemistry, Science Press, Beijing, 2004, p. 361. R. Andersson, R. Gref, L. N. Lundgren, Phytochemistry 1990, 29, 1320. D. F. Zinkel, T. V. Magee, J. Walter, Phytochemistry 1985, 24, 1273. V. A. Raldugin, L. I. Demenkova, V. A. Pentegova, Khim. Prir. Soedin. 1978, 345. M. Z. Sultan, Y. M. Jeon, S. S. Moon, Planta Med. 2008, 74, 449. T. Lei, Y. Li, D. M. Li, G. M. Liu, J. K. Liu, F. Wang, J. Asian Nat. Prod. Res. 2011, 13, 425. V. A. Raldugin, N. K. Kashtanova, V. A. Pentegova, Khim. Prir. Soedin. 1970, 481. R. Zhang, H. Q. Duan, Z. Yao, Q. Pan, F. G. Zhang, China J. Chin. Mater. Med. 2006, 31, 1956. J. M. Fang, C. I. Lang, W. L. Chen, Y. S. Cheng, Phytochemistry 1991, 30, 2793. X. Yang, Y. Ding, Z. H. Sun, D. M. Zhang, Acta Pharm. Sin. 2005, 40, 435. A. H. Conner, J. W. Rowe, Phytochemistry 1977, 16, 1777. X. Yang, H. Zhang, Y. C. Zhang, Y. Ma, J. Wang, Fitoterapia 2008, 79, 179. X. Yang, Y. C. Zhang, H. Zhang, A. J. Dong, H. T. Zhao, D. C. Xu, Y. Ma, J. Wang, Chem. Nat. Compd. 2010, 46, 227. E. A. Khamidullina, A. L. Vereshchagin, S. A. Medvedeva, Chem. Nat. Compd. 2005, 41, 426. L. Buratti, J. P. Allais, M. Barbier, Phytochemistry 1990, 29, 2708. M. J. Jung, H. A. Jung, S. S. Kang, G. S. Hwang, J. S. Choi, Arch. Pharmacal Res. 2009, 32, 1699. R. J. Weston, Aust. J. Chem. 1973, 26, 2729. A. I. Lisina, S. M. Yasnetskaya, V. A. Pentegova, Khim. Prir. Soedin. 1972, 300. J. Teng, R. Zhang, Y. W. Zhang, H. Q. Duan, Y. Takaishi, Nat. Prod. Res. 2010, 24, 1587. Q. Wang, Z. Rong, J. Teng, Y. Takaishi, H. Q. Duan, Chin. Chem. Lett. 2008, 19, 187. V. A. Raldugin, V. A. Khan, Z. V. Dubovenko, V. A. Pentegova, Khim. Prir. Soedin. 1976, 299. S. Q. Song, Oleoresin Characteristics and Chemical Classification of Pinus, University of Science and Technology of China Press, 2009, pp. 34. J. M. Fang, W. C. Su, Y. S. Cheng, Phytochemistry 1988, 27, 1395. J. M. Fang, C. F. Chang, Y. S. Cheng, Phytochemistry 1987, 26, 2559. M. J. Jung, J. H. Choi, H. Y. Chung, J. H. Jung, J. S. Choi, Fitoterapia 2001, 72, 943. J. H. Kwon, J. H. Kim, S. E. Choi, K. H. Park, M. W. Lee, Arch. Pharmacal Res. 2010, 33, 2011. W. Wang, X. H. Wang, J. F. Yi, X. J. Zhang, J. Chin. Hosp. Pharm. 2008, 28, 549. W. Wang, X. H. Wang, X. J. Zhang, J. Chin. Hosp. Pharm. 2008, 28, 190. H. Pan, L. N. Lundgren, Phytochemistry 1996, 42, 1185. F. Hanawa, T. Yamada, T. Nakashima, Phytochemistry 2001, 57, 223. W. S. Feng, Y. Z. Wang, X. K. Zheng, Y. F. Bi, Acta Pharm. Sin. 2004, 39, 190. J. L, L. Y. Jia, J. Z. Yuan, J. J. Zhang, Q. S. Sun, J. Shenyang Pharm. Univ. 2011, 28, 21. Y. F. Bi, X. K. Zheng, H. M. Liu, W. S. Feng, C. R. Ji, Y. Z. Zhang, Acta Pharm. Sin. 2001, 36, 832. Y. F. Bi, X. K. Zheng, W. S. Feng, Y. Z. Zhang, C. R. Ji, Acta Pharm. Sin. 2002, 37, 626. J. J. Zhang, Y. P. Ma, J. Z. Yuan, Q. S. Sun, J. Shenyang Pharm. Univ. 2010, 27, 767. W. S. Feng, X. K. Zheng, Y. Z. Wang, Y. F. Bi, Acta Pharm. Sin. 2003, 38, 927. W. S. Feng, Y. F. Bi, X. K. Zheng, X. L. Wang, J. Li, Acta Pharm. Sin. 2003, 38, 199. W. S. Feng, X. K. Zheng, Y. Z. Wang, Y. F. Bi, X. L. Wang, Nat. Prod. Res. Dev. 2004, 16, 500. W. Wang, X. H. Wang, X. J. Zhang, J. Chin. Hosp. Pharm. 2009, 29, 1283. X. K. Zheng, W. S. Feng, Y. Z. Wang, Y. F. Bi, X. L. Wang, J. Chin. Pharm. 2004, 39, 820. N. S. EI-Shaer, Alex. J. Pharm. Sci. 2002, 16, 31. H. Rong, Y. X. Yu, Q. C. Li, Q. C. Hong, Nat. Prod. Res. Dev. 2001, 13, 30. Y. X. Zhao, C. S. Li, T. M. Yi, X. D. Luo, J. Zhou, Acta Pharm. Sin. 2008, 82, 1146. X. Zhang, Y. Q. Ji, P. Li, D. G. Wan, S. R. Deng, H. H. Chen, D. F. Jiang, Nat. Prod. Res. Dev. 2008, 18, 621.

2160

CHEMISTRY & BIODIVERSITY – Vol. 10 (2013)

[72] L. F. Li, K. L. Shi, B. Y. Liu, R. M. Li, Res. Tradit. Chin. Med. 1999, 15, 50. [73] W. Li, Y. L. Chen, X. P. Wang, China J. Chin. Mater. Med. 1991, 16, 172. [74] H. Sakagami, M. Ikeda, S. Unten, K. Takeda, J. Murayama, A. Hamada, K. Kimura, N. Komatsu, K. Konno, Anticancer Res. 1987, 7, 1153. [75] Y. Kurakata, H. Sakagami, M. Takeda, K. Konno, K. Kitajima, S. Lchikawa, N. Hata, T. Sato, Anticancer Res. 1989, 9, 961. [76] H. Nagagsawa, Y. Lwai, M. Lwai, A. Suzuki, S. Lmai, Anticancer Res. 1992, 12, 845. [77] Y. C. zlem, G. Markus, A. Ismail, S. Canan, K. Kemal S, B. Erdal, J. Sci. Food Agric. 2009, 89, 1339. [78] H. L. Ma, B. Liu, D. R. Feng, H. Xie, R. D. Li, Y. X. Yuchi, H. B. Wang, J. F. Wang, Int. J. Mol. Med. 2010, 25, 751. [79] K. Li, Q. W. Li, J. Li, D. W. Gao, T. Zhang, Z. S. Han, F. L. Zheng, Therapy 2007, 4, 685. [80] M. Kyriazi, D. Yova, M. Rallis, A. Lima, Cancer Lett. 2006, 237, 234. [81] J. P. Xiao, Y. H. Ren, Food Sci. 1994, 2, 52. [82] P. Parihar, L. Parihar, A. Bohra, Bangladesh J. Bot. 2006, 35, 85. [83] J. S. Park, G. H. Lee, J. Sci. Food Agric. 2011, 91, 703. [84] E. Smith, E. Williamson, M. Zloh, S. Gibbons, Phytother. Res. 2005, 19, 538. [85] T. Yamada, S. Ito, Ann. Phytopathol. Soc. Jpn. 1993, 59, 666. [86] S. Tang, A. Lomascolo, L. Guo, J. C. Sigoillot, H. A. Wang, J. L. Robert, C. Antona, M. Asther, Mycosystema 2011, 20, 520. [87] C. L. Lin, J. W. Jiang, M. Y. Wu, Y. X. Yan, Y. B. Zhou, J. Chin. Med. Mater. 2001, 24, 882. [88] X. Yang, H. T. Zhao, J. Wang, Q. Meng, H. Zhang, L. Yao, Y. C. Zhang, A. J. Dong, Y. Ma, Z. Y. Wang, D. C. Xu, Y. Ding, J. Med. Plants Res. 2010, 4, 1668. [89] Y. J. Kim, B. J. Cho, M. S. Ko, J. M. Jung, H. R. Kim, H. S. Song, J. Y. Lee, S. S. Sim, C. J. Kim, Yakhak Hoechi 2010, 54, 215. [90] A. Maimoona, L. Naeem, S. Shujaat, Z. Saddiqe, T. Mughal, T. Mehmood, J. Asian Chem. 2011, 23, 819. [91] Y. H. Chen, P. C. Hsieh, J. L. Mau, S. C. Sheu, LWT-Food Sci. Technol. 2011, 44, 1477. [92] X. X. Wei, J. H. Yu, D. W. Li, L. Tong, H. H. Pang, Y. G. Zu, Linye Kexue 2011, 47, 54. [93] C. L. Apetrei, C. Tuchilus, A. C. Aprotosoaie, A. Oprea, K. E. Malterud, A. Miron, Molecules 2011, 16, 7773. [94] X. Pan, Y. Q. Liu, S. W. Chen, X. W. Zhuang, J. Zhejiang Forest Sci. Technol. 2009, 29, 44. [95] Y. S. Park, M. H. Jeon, H. J. Hwang, M. R. Park, S. H. Lee, S. G. Kim, M. Kim, Nutr. Res. Pract. 2011, 5, 281. [96] X. Y. Su, Z. Y. Wang, J. R. Liu, Food Chem. 2009, 117, 681. [97] H. Sakagami, M. Takeda, Y. Kawazoe, K. Nagata, A. Ishihama, M. Ueda, S. Yamazaki, In Vivo 1992, 6, 491. [98] Z. Zhang, P. Zhang, X. D. Han, M. Yang, F. Liu, G. M. Liu, Lishizhen Med. Mater. Med. Res. 2010, 21, 2435 [99] G. G. Liu, Y. G. Lu, H. Z. Li, D. M. Li, Z. Zhang, J. Dali Univ. 2009, 8, 69. [100] K. Nagata, H. Sakagami, H. Harada, M. Nonoyama, K. Konno, Antiviral Res. 1990, 13, 11. [101] K. Wei, Z. H. Sun, Z. G. Yan, H. Wang, X. L. Zhu, X. J. Wang, P. C. Sheng, R. L. Zhu, Vaccine 2011, 29, 2530. [102] X. L. Wang, Master Thesis, Henan University of TCM, 2008. [103] B. He, Z. X. Xiong, J. Yunnan Normal Univ. 1998, 18, 80. [104] Z. M. Kong, Y. J. Xu, Q. R. Qiao, Y. X. Wang, Z. T. Liu, B. Y. Ding, M. H. Dai, X. S. He, Q. L. Zhu, Z. Y. Zhu, J. Nanjing Univ. 1995, 31, 411. [105] L. Q. Li, J. K. Li, J. Northwest A&F Univ. 2006, 34, 33. [106] M. Sugano, I. Ikeda, K. Wakamatsum, T. Oka, Br. J. Nutr. 1994, 72, 775. Received November 10, 2011

Chemical constituents and biological activities of pinus species.

Chemical constituents and biological activities of pinus species. - PDF Download Free
538KB Sizes 0 Downloads 0 Views