March 15, 2015 / Vol. 40, No. 6 / OPTICS LETTERS

1097

Direct generation of 2 W average-power and 232 nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser Yizhong Huang, Zhengqian Luo,* Fengfu Xiong, Yingyue Li, Min Zhong, Zhiping Cai, Huiying Xu, and Hongyan Fu Department of Electronic Engineering, Xiamen University, Xiamen 361005, China *Corresponding author: [email protected] Received December 15, 2014; revised February 3, 2015; accepted February 5, 2015; posted February 6, 2015 (Doc. ID 230617); published March 12, 2015 We report the generation of 2.06 W average-power and 232 nJ picosecond mode-locked pulses directly from an ultra-simple Yb-doped fiber laser. A section of Yb-doped double-clad fiber pumped by a 976 nm laser diode provides the large gain, and the linear cavity is simply formed by a 1064 nm highly reflective fiber Bragg grating and a fiber loop mirror (FLM) using a 5/95 optical coupler. The asymmetric FLM not only acts as the output mirror for providing ∼20% optical feedback, but also equivalently behaves as a nonlinear optical loop mirror (NOLM) to initiate the mode-locking operation in this cavity. Stable mode-locking is therefore achieved over a pump power of 3.76 W. The mode-locked pulses show the dissipative soliton resonance (DSR), which has the pulse duration of 695 ps to ∼1 ns, and the almost unchanged peak power of ∼200 W as increasing the pump power. In particular, this laser can emit 232 nJ high-energy DSR pulses with an average output power of >2 W. This is, to the best of our knowledge, the first demonstration of such an ultra-simple, mode-locked fiber laser that enables watt-level, high energy, picosecond DSR pulses. © 2015 Optical Society of America OCIS codes: (140.4050) Mode-locked lasers; (140.3550) Lasers, Raman; (060.3510) Lasers, fiber. http://dx.doi.org/10.1364/OL.40.001097

During the past two decades, passively mode-locked fiber lasers have attracted extensive attention owing to their advantageous properties of compact, high beam quality and the ability to generate ultrashort pulses. High-power and high-energy mode-locked fiber lasers with picosecond or femtosecond duration are especially preferred for some practical applications, such as material processing, nonlinear optics, defense, and biomedical imaging [1–3]. Conventionally, passive modelocking in anomalous dispersion regime can stably generate ultrashort solitons [4], but the pulse energy is usually limited to 2 W, pulse energy of 232 nJ, peak power of ∼200 W, and pulse duration of 695 ps to ∼1 ns. Moreover, our experimental results agree reasonably well with the numerical analysis in [22,25]. In addition, we also achieved the DSR modelocking using different FMLs with a 1/99 or 10/90 OC. However, the 1/99 FLM with only ∼4% reflectivity was perturbed more easily, and the DSR mode-locking became relative unstable. The 10/90 FLM with ∼36% reflectivity can extract only ∼64% of the intracavity light as the laser output, leading to a decrease in the average output power. This work was supported by the National Nature Science Foundation of China (Nos. 61475129 and 61177044). References 1. F. W. Wise, A. Chong, and W. H. Renninger, Laser Photon. Rev. 2, 58 (2008). 2. G. Genty, J. M. Dudley, and B. J. Eggleton, Appl. Phys. B 94, 187 (2009). 3. N. Nishizawa, Y. Chen, P. Hsiung, E. Ippen, and J. Fujimoto, Opt. Lett. 29, 2846 (2004). 4. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, Opt. Lett. 35, 2858 (2010). 5. L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997). 6. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. Ferrari, Appl. Phys. Lett. 97, 203106 (2010). 7. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, Nano Res. 3, 653 (2010). 8. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Set, Opt. Lett. 29, 1581 (2004). 9. J. Travers, J. Morgenweg, E. Obraztsova, A. Chernov, E. Kelleher, and S. Popov, Laser Phys. Lett. 8, 144 (2011).

10. J. Sotor, G. Sobon, K. Grodecki, and K. Abramski, Appl. Phys. Lett. 104, 251112 (2014). 11. Y. W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, Opt. Lett. 32, 148 (2007). 12. H. Zhang, D. Tang, R. Knize, L. Zhao, Q. Bao, and K. P. Loh, Appl. Phys. Lett. 96, 111112 (2010). 13. Z. Luo, Y. Huang, J. Wang, H. Cheng, Z. Cai, and C. Ye, IEEE Photon. Technol. Lett. 24, 1539 (2012). 14. L. Zhao, D. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, Opt. Lett. 35, 3622 (2010). 15. A. Chong, W. H. Renninger, and F. W. Wise, Opt. Lett. 32, 2408 (2007). 16. K. Kieu, W. Renninger, A. Chong, and F. Wise, Opt. Lett. 34, 593 (2009). 17. F. Ilday, J. Buckley, W. Clark, and F. Wise, Phys. Rev. Lett. 92, 213902 (2004). 18. F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, Opt. Express 16, 20471 (2008). 19. N. Akhmediev, J. Soto-Crespo, and P. Grelu, Phys. Lett. A 372, 3124 (2008). 20. W. Chang, A. Ankiewicz, J. Soto-Crespo, and N. Akhmediev, Phys. Rev. A 78, 023830 (2008). 21. W. Chang, J. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, Phys. Rev. A 79, 033840 (2009). 22. P. Grelu, W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, J. Opt. Soc. Am. B 27, 2336 (2010). 23. E. Ding, P. Grelu, and J. N. Kutz, Opt. Lett. 36, 1146 (2011). 24. P. Grelu and N. Akhmediev, Nat. Photonics 6, 84 (2012). 25. X. Liu, Phys. Rev. A 81, 053819 (2010). 26. X. Wu, D. Tang, H. Zhang, and L. Zhao, Opt. Express 17, 5580 (2009). 27. X. Li, X. Liu, X. Hu, L. Wang, H. Lu, Y. Wang, and W. Zhao, Opt. Lett. 35, 3249 (2010). 28. S. K. Wang, Q. Y. Ning, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, Opt. Express 21, 2402 (2013). 29. L. Liu, J. H. Liao, Q. Y. Ning, W. Yu, A. P. Luo, S. H. Xu, Z. C. Luo, Z. M. Yang, and W. C. Xu, Opt. Express 21, 27087 (2013). 30. J. H. Yang, C. Y. Guo, S. C. Ruan, D. Q. Ouyang, H. Q. Lin, Y. M. Wu, and R. H. Wen, IEEE Photon. J. 5, 1500806 (2013). 31. X. Zhang, C. Gu, G. Chen, B. Sun, L. Xu, A. Wang, and H. Ming, Opt. Lett. 37, 1334 (2012). 32. L. Mei, G. Chen, L. Xu, X. Zhang, C. Gu, B. Sun, and A. Wang, Opt. Lett. 39, 3235 (2014). 33. N. Doran and D. Wood, Opt. Lett. 13, 56 (1988). 34. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, Opt. Lett. 35, 3709 (2010). 35. Z. Luo, M. Zhou, D. Wu, C. Ye, J. Weng, J. Dong, H. Xu, Z. Cai, and L. Chen, J. Lightwave Technol. 29, 2732 (2011). 36. L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, Opt. Express 20, 265 (2012). 37. W. Chang, P. Grelu, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, in CLEO (IEEE EUROPE/EQEC, 2011), p. 1. 38. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, J. Opt. Soc. Am. B 25, 1972 (2008). 39. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).

Direct generation of 2  W average-power and 232  nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser.

We report the generation of 2.06 W average-power and 232 nJ picosecond mode-locked pulses directly from an ultra-simple Yb-doped fiber laser. A sectio...
587KB Sizes 0 Downloads 5 Views