G Model

ARTICLE IN PRESS

MUT-11405; No. of Pages 14

Mutation Research xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis journal homepage: www.elsevier.com/locate/molmut Community address: www.elsevier.com/locate/mutres

Review

DNA damage in neurodegenerative diseases Fabio Coppedè ∗ , Lucia Migliore ∗∗ Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

a r t i c l e

i n f o

Article history: Available online xxx Keywords: Alzheimer’s disease Parkinson’s disease Amyotrophic Lateral Sclerosis DNA damage Chromosome damage Epigenetics

a b s t r a c t Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer’s disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis, which represent three of the most common neurodegenerative pathologies in humans. © 2014 Elsevier B.V. All rights reserved.

Contents 1. 2.

3.

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DNA damage in Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1. Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2. Oxidative damage to nucleic acids in Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3. Mitochondrial DNA mutations in Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4. Indirectly ROS induced DNA damage in Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5. Cytogenetic damage in Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6. Epigenetics and DNA damage in Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DNA damage in Parkinson’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1. Parkinson’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2. Oxidative damage to nucleic acids in Parkinson’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3. Mitochondrial DNA mutations in Parkinson’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4. Indirectly ROS induced DNA damage in Parkinson’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5. Cytogenetic damage in Parkinson’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6. Epigenetics and DNA damage in Parkinson’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

∗ Corresponding author at: Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy. Tel.: +39 050 2218544. ∗∗ Corresponding author at: Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Medical School, Via Roma 55, 56126 Pisa, Italy. Tel.: +39 050 2218549. E-mail addresses: [email protected] (F. Coppedè), [email protected] (L. Migliore). http://dx.doi.org/10.1016/j.mrfmmm.2014.11.010 0027-5107/© 2014 Elsevier B.V. All rights reserved.

Please cite this article in press as: F. Coppedè, L. Migliore, DNA damage in neurodegenerative diseases, Mutat. Res.: Fundam. Mol. Mech. Mutagen. (2014), http://dx.doi.org/10.1016/j.mrfmmm.2014.11.010

G Model MUT-11405; No. of Pages 14

ARTICLE IN PRESS F. Coppedè, L. Migliore / Mutation Research xxx (2014) xxx–xxx

2

4.

DNA damage in Amyotrophic Lateral Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1. Amyotrophic Lateral Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2. Oxidative DNA damage to nucleic acids in Amyotrophic Lateral Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3. Mitochondrial DNA mutations in Amyotrophic Lateral Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4. Other kinds of DNA damage in Amyotrophic Lateral Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5. Epigenetics and DNA damage in Amyotrophic Lateral Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conflict of interest statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

2. DNA damage in Alzheimer’s disease

The term neurodegenerative diseases describes a range of hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction resulting from the degeneration of selected neurons in the human brain or spinal cord. As neurons deteriorate, an individual may first experience relatively mild symptoms such as problems with coordination or remembering names. However, with the increasing number of neurons that die, the symptoms get progressively worse, and many of these diseases are fatal. Some of the more well known neurodegenerative disorders include Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) also referred to as motor neuron disease (MND) or Lou Gehrig’s disease [1]. DNA damage, mainly in the form of oxidative DNA damage and cytogenetic damage, has been largely documented in clinical and preclinical stages of AD brains and peripheral tissues, and is believed to contribute to the neurodegenerative process [2]. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage is well documented in PD, and several of the genes causing familial forms of the disease code either for mitochondrial proteins or proteins that are associated with mitochondria, all involved in pathways that elicit oxidative stress or free radical damage [3]. In addition, oxidative DNA damage has been hypothesized to contribute to motor-neuron degeneration in ALS [4]. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. Indeed, DNA damage can accumulate in developing brain or spinal cord neurons during early life as a consequence of genetic predisposition, environmental exposure or epigenetic phenomena, leading to the origin of neuronal sub-populations characterized by mutation, copy number variation, or altered expression of certain genes, acting as foci of the neurodegenerative process later in life [5]. DNA damage can also accumulate in post-mitotic differentiated neurons as a consequence of ageing and/or environmental exposures to neurotoxicants, coupled with the age-related reduction of cellular antioxidant defences and DNA repair capabilities, and contribute to the selective degeneration of damaged neurons [6]. However, an increased DNA damage can also partially result from the oxidative damage and the reduced capability to repair it caused by the neurodegenerative process itself, or as a consequence of the cell-cycle re-entry and enhanced neurogenesis put in place to counteract neuronal damage and loss [7]. The accumulating evidence of global epigenetic changes in neurodegenerative diseases suggests that also those mechanisms could contribute to impaired DNA repair and chromosome damage in those disorders [8]. We will address those issues in the context of AD, PD and ALS, that represent three of the most common and studied multi-factorial neurodegenerative diseases.

2.1. Alzheimer’s disease

00 00 00 00 00 00 00 00 00 00

Alzheimer’s disease is the most common neurodegenerative disorder and the primary form of dementia among older people. Dementia is a general term to describe a severe decline in mental ability which includes the loss of cognitive functioning such as thinking, remembering and reasoning, coupled with changes in behaviour and personality severe enough to interfere with daily life. It is estimated that almost 36 million people in the world have dementia, and that this number will increase up to 115 millions by 2050, only as a consequence of the global ageing of the population in both developed and developing countries [9]. Concerning AD, dementia ranges in severity with time following the progression of the neurodegenerative process that takes place in selected brain regions, including the temporal and the parietal lobe, and parts of the frontal cortex and cingulate gyrus. After a pre-dementia stage, often defined as amnestic mild cognitive impairment (MCI), dementia usually starts as a mild condition, with patients that easily repeat questions, have problems handling moneys, tend to get lost, and start to have some mood and personality changes. This is followed by a moderate form of the disease often characterized by problems in recognizing family and friends, ending up to the most severe stage, when patients depend completely on others for the performance of daily activities. Therefore, AD is known for placing a great burden on caregivers, which are usually the partner or close relatives, and unfortunately there is no cure to halt the progression of the disease, making it a serious health concern and one of the most costly diseases to the society [9]. Affected brain regions in AD are characterized by the occurrence of extracellular amyloid deposits which are called senile plaques (SP) and by the presence of intra-neuronal aggregates of hyperphosphorylated tau protein denoted as neurofibrillary tangles (NFT) [10]. The amyloid ␤ (A␤) peptide is the main component of SP, and results from the cleavage of its precursor, the amyloid precursor protein (APP). Mutations in APP and presenilin (PSEN1 and PSEN2) genes alter APP production and/or processing and cause early-onset (G polymorphism and maternal risk of having a child with Down syndrome: a meta-analysis, Nutrients 5 (2013) 2551–2563. [92] M. Yang, T. Gong, X. Lin, L. Qi, Y. Guo, Z. Cao, M. Shen, Y. Du, Maternal gene polymorphisms involved in folate metabolism and the risk of having a Down syndrome offspring: a meta-analysis, Mutagenesis 28 (2013) 661–671. [93] F. Coppedè, P. Bosco, V. Lorenzoni, M. Denaro, G. Anello, I. Antonucci, C. Barone, L. Stuppia, C. Romano, L. Migliore, The MTRR 66A>G polymorphism and maternal risk of birth of a child with Down syndrome in Caucasian women: a case–control study and a meta-analysis, Mol. Biol. Rep. (2014) 5571–5583. [94] H.C. Lin, T.Y. Song, M.L. Hu, S-adenosylhomocysteine enhances DNA damage through increased ␤-amyloid formation and inhibition of the DNA-repair enzyme OGG1b in microglial BV-2 cells, Toxicology 290 (2011) 342–349. [95] W. Wei, Y.H. Liu, C.E. Zhang, Q. Wang, Z. Wei, D.D. Mousseau, J.Z. Wang, Q. Tian, G.P. Liu, Folate/vitamin-B12 prevents chronic hyperhomocysteinemiainduced tau hyperphosphorylation and memory deficits in aged rats, J. Alzheimers Dis. 27 (2011) 639–650. [96] C. Beharry, L.S. Cohen, J. Di, K. Ibrahim, S. Briffa-Mirabella, C. Alonso Adel, Tau-induced neurodegeneration: mechanisms and targets, Neurosci. Bull. 30 (2014) 346–358. [97] B. Thomas, M.F. Beal, Molecular insights into Parkinson’s disease, F1000 Med. Rep. 3 (2011) 7. [98] F. Coppedè, Genetics and epigenetics of Parkinson’s disease, Scientific World Journal 2012 (2012) 489830. [99] M.A. Thenganatt, J. Jankovic, Parkinson disease subtypes, JAMA Neurol. 71 (2014) 499–504. [100] S.K. Müller, A. Bender, C. Laub, T. Högen, F. Schlaudraff, B. Liss, T. Klopstock, M. Elstner, Lewy body pathology is associated with mitochondrial DNA damage in Parkinson’s disease, Neurobiol. Aging 34 (2013) 2231–2233. [101] L.H. Sanders, J. Laganière, O. Cooper, S.K. Mak, B.J. Vu, Y.A. Huang, D.E. Paschon, M. Vangipuram, R. Sundararajan, F.D. Urnov, et al., LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction, Neurobiol. Dis. 62 (2014) 381–386. [102] S.R. Subramaniam, M.F. Chesselet, Mitochondrial dysfunction and oxidative stress in Parkinson’s disease, Prog. Neurobiol. 106–107 (2013) 17–32. [103] J.R. Sanchez-Ramos, E. Overvik, B.N. Ames, A marker of oxyradical-mediated DNA damage (8-hydroxy-2 -deoxyguanosine) is increased in nigro-striatum of Parkinson’s disease brain, Neurodegeneration 3 (1994) 197–204. [104] Z.I. Alam, A. Jenner, S.E. Daniel, A.J. Lees, N. Cairns, C.D. Marsden, P. Jenner, B. Halliwell, Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra, J. Neurochem. 69 (1997) 1196–1203. [105] J. Zhang, G. Perry, M.A. Smith, D. Robertson, S.J. Olson, D.G. Graham, T.J. Montine, Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons, Am. J. Pathol. 154 (1999) 1423–1429. [106] A. Kikuchi, A. Takeda, H. Onodera, T. Kimpara, K. Hisanaga, N. Sato, A. Nunomura, R.J. Castellani, G. Perry, M.A. Smith, Y. Itoyama, Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy, Neurobiol. Dis. 9 (2002) 244–248. [107] L. Migliore, R. Scarpato, F. Coppedè, L. Petrozzi, U. Bonuccelli, V. Rodilla, Chromosome and oxidative damage biomarkers in lymphocytes of Parkinson’s disease patients, Int. J. Hyg. Environ. Health 204 (2001) 61–66. [108] R.C. Seet, C.Y. Lee, E.C. Lim, J.J. Tan, A.M. Quek, W.L. Chong, W.F. Looi, S.H. Huang, H. Wang, Y.H. Chan, et al., Oxidative damage in Parkinson disease: measurement using accurate biomarkers, Free Radic. Biol. Med. 48 (2010) 560–566. [109] Y. Nakabeppu, D. Tsuchimoto, H. Yamaguchi, K. Sakumi, Oxidative damage in nucleic acids and Parkinson’s disease, J. Neurosci. Res. 85 (2007) 919–934. [110] F. Coppedè, L. Migliore, DNA repair in premature aging disorders and neurodegeneration, Curr. Aging Sci. 3 (2010) 3–19. [111] G. Hudson, A.M. Schaefer, R.W. Taylor, W. Tiangyou, A. Gibson, G. Venables, P. Griffiths, D.J. Burn, D.M. Turnbull, P.F. Chinnery, Mutation of the linker region of the polymerase gamma-1 (POLG1) gene associated with progressive external ophthalmoplegia and Parkinsonism, Arch. Neurol. 64 (2007) 553–557. [112] A.M. Remes, R. Hinttala, M. Kärppä, H. Soini, R. Takalo, J. Uusimaa, K. Majamaa, Parkinsonism associated with the homozygous W748S mutation in the POLG1 gene, Parkinsonism Relat. Disord. 14 (2008) 652–654. [113] J. Eerola, P.T. Luoma, T. Peuralinna, S. Scholz, C. Paisan-Ruiz, A. Suomalainen, A.B. Singleton, P.J. Tienari, POLG1 polyglutamine tract variants associated with Parkinson’s disease, Neurosci. Lett. 477 (2010) 1–5. [114] N. Balafkan, C. Tzoulis, B. Müller, K. Haugarvoll, O.B. Tysnes, J.P. Larsen, L.A. Bindoff, Number of CAG repeats in POLG1 and its association with Parkinson disease in the Norwegian population, Mitochondrion 12 (2012) 640–643. [115] A. Bender, P. Desplats, B. Spencer, E. Rockenstein, A. Adame, M. Elstner, C. Laub, S. Mueller, A.O. Koob, M. Mante, E. Pham, T. Klopstock, E. Masliah, TOM40 mediates mitochondrial dysfunction induced by ␣-synuclein accumulation in Parkinson’s disease, PLOS ONE 8 (2013) e62277. [116] A.H. Schapira, J.M. Cooper, D. Dexter, J.B. Clark, P. Jenner, C.D. Marsden, Mitochondrial complex I deficiency in Parkinson’s disease, J. Neurochem. 54 (1990) 823–827. [117] A. Bender, K.J. Krishnan, C.M. Morris, G.A. Taylor, A.K. Reeve, R.H. Perry, E. Jaros, J.S. Hersheson, J. Betts, T. Klopstock, R.W. Taylor, D.M. Turnbull, High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease, Nat. Genet. 38 (2006) 515–517.

Please cite this article in press as: F. Coppedè, L. Migliore, DNA damage in neurodegenerative diseases, Mutat. Res.: Fundam. Mol. Mech. Mutagen. (2014), http://dx.doi.org/10.1016/j.mrfmmm.2014.11.010

G Model MUT-11405; No. of Pages 14

ARTICLE IN PRESS F. Coppedè, L. Migliore / Mutation Research xxx (2014) xxx–xxx

[118] A.K. Reeve, K.J. Krishnan, J.L. Elson, C.M. Morris, A. Bender, R.N. Lightowlers, D.M. Turnbull, Nature of mitochondrial DNA deletions in substantia nigra neurons, Am. J. Hum. Genet. 82 (2008) 228–235. [119] C. Perier, A. Bender, E. García-Arumí, M.J. Melià, J. Bové, C. Laub, T. Klopstock, M. Elstner, R.B. Mounsey, P. Teismann, T. Prolla, A.L. Andreu, M. Vila, Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms, Brain 136 (2013) 2369– 2378. [120] D.K. Simon, M.T. Lin, L. Zheng, G.J. Liu, C.H. Ahn, L.M. Kim, W.M. Mauck, F. Twu, M.F. Beal, D.R. Johns, Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease, Neurobiol. Aging 25 (2004) 71–81. [121] M.T. Lin, I. Cantuti-Castelvetri, K. Zheng, K.E. Jackson, Y.B. Tan, T. Arzberger, A.J. Lees, R.A. Betensky, M.F. Beal, D.K. Simon, Somatic mitochondrial DNA mutations in early Parkinson and incidental Lewy body disease, Ann. Neurol. 71 (2012) 850–854. [122] T.K. Lin, C.W. Liou, S.D. Chen, Y.C. Chuang, M.M. Tiao, P.W. Wang, J.B. Chen, J.H. Chuang, Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson’s disease, Chang Gung Med. J. 32 (2009) 589–599. [123] L.H. Sanders, J. McCoy, X. Hu, P.G. Mastroberardino, B.C. Dickinson, C.J. Chang, C.T. Chu, B. Van Houten, J.T. Greenamyre, Mitochondrial DNA damage: molecular marker of vulnerable nigral neurons in Parkinson’s disease, Neurobiol. Dis. 70 (2014) 214–223. [124] G. Lévay, W.J. Bodell, Detection of dopamine–DNA adducts: potential role in Parkinson’s disease, Carcinogenesis 14 (1993) 1241–1245. [125] M. Zahid, M. Saeed, L. Yang, C. Beseler, E. Rogan, E.L. Cavalieri, Formation of dopamine quinone-DNA adducts and their potential role in the etiology of Parkinson’s disease, IUBMB Life 63 (2011) 1087–1093. [126] N.W. Gaikwad, D. Murman, C.L. Beseler, M. Zahid, E.G. Rogan, E.L. Cavalieri, Imbalanced estrogen metabolism in the brain: possible relevance to the etiology of Parkinson’s disease, Biomarkers 16 (2011) 434– 444. [127] L. Migliore, L. Petrozzi, C. Lucetti, G. Gambaccini, S. Bernardini, R. Scarpato, F. Trippi, R. Barale, G. Frenzilli, V. Rodilla, U. Bonuccelli, Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients, Neurology 58 (2002) 1809–1815. [128] L. Petrozzi, C. Lucetti, R. Scarpato, G. Gambaccini, F. Trippi, S. Bernardini, P. Del Dotto, L. Migliore, U. Bonuccelli, Cytogenetic alterations in lymphocytes of Alzheimer’s disease and Parkinson’s disease patients, Neurol. Sci. 23 (Suppl. 2) (2002) S97–S98. [129] R.G. Oli, G. Fazeli, W. Kuhn, S. Walitza, M. Gerlach, H. Stopper, No increased chromosomal damage in L-DOPA-treated patients with Parkinson’s disease: a pilot study, J. Neural Transm. 117 (2010) 737–746. [130] M.L. Hegde, V.B. Gupta, M. Anitha, T. Harikrishna, S.K. Shankar, U. Muthane, K. Subba Rao, K.S. Jagannatha Rao, Studies on genomic DNA topology and stability in brain regions of Parkinson’s disease, Arch. Biochem. Biophys. 449 (2006) 143–156. [131] I.F. Harrison, D.T. Dexter, Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson’s disease? Pharmacol. Ther. 140 (2013) 34–52. [132] F. Coppedè, The potential of epigenetic therapies in neurodegenerative diseases, Front. Genet. 5 (2014) 220. [133] M. Kong, M. Ba, H. Liang, L. Ma, Q. Yu, T. Yu, Y. Wang, 5 -Aza-dC sensitizes paraquat toxic effects on PC12 cell, Neurosci. Lett. 524 (2012) 35–39. [134] E. Masliah, W. Dumaop, D. Galasko, P. Desplats, Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes, Epigenetics 8 (2013) 1030–1038. [135] S. Vucic, J.D. Rothstein, M.C. Kiernan, Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies, Trends Neurosci. (2014) 433–442. [136] D.R. Rosen, T. Siddique, D. Patterson, D.A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J.P. O’Regan, H.X.H.X. Deng, et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362 (1993) 59–62. [137] M.T. Carrì, M. Cozzolino, SOD1 and mitochondria in ALS: a dangerous liaison, J. Bioenerg. Biomembr. 43 (2011) 593–599. [138] T.J. Kwiatkowski, D.A. Bosco, A.L. Leclerc, E. Tamrazian, C.R. Vanderburg, C. Russ, A. Davis, J. Gilchrist, E.J. Kasarskis, T.T. Munsat, et al., Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis, Science 323 (2009) 1205–1208. [139] C. Vance, B. Rogelj, T. Hortobágyi, K.J. De Vos, A.L. Nishimura, J. Sreedharan, X.X. Hu, B. Smith, D. Ruddy, P. Wright, et al., Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6, Science 323 (2009) 1208–1211. [140] E. Kabashi, P.N. Valdmanis, P. Dion, D. Spiegelman, B.J. McConkey, C. Vande Velde, J.P. Bouchard, L. Lacomblez, K. Pochigaeva, F. Salachas, et al., TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis, Nat. Genet. 40 (2008) 572–574. [141] A.E. Renton, E. Majounie, A. Waite, J. Simón-Sánchez, S. Rollinson, J.R. Gibbs, J.C. Schymick, H. Laaksovirta, J.C. van Swieten, L. Myllykangas, et al., A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALSFTD, Neuron 72 (2011) 257–268. [142] M. DeJesus-Hernandez, I.R. Mackenzie, B.F. Boeve, A.L. Boxer, M. Baker, N.J. Rutherford, A.M. Nicholson, N.A. Finch, H. Flynn, J.J. Adamson, et al., Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS, Neuron 72 (2011) 245–256.

13

[143] C.S. Leblond, H.M. Kaneb, P.A. Dion, G.A. Rouleau, Dissection of genetic factors associated with amyotrophic lateral sclerosis, Exp. Neurol. 262PB (2014) 91–101. [144] R.J. Ferrante, S.E. Browne, L.A. Shinobu, A.C. Bowling, M.J. Baik, U. MacGarvey, N.W. Kowall, R.H. Brown, M.F. Beal, Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis, J. Neurochem. 69 (1997) 2064–2074. [145] M. Bogdanov, R.H. Brown, W. Matson, R. Smart, D. Hayden, H. O’Donnell, M. Flint Beal, M. Cudkowicz, Increased oxidative damage to DNA in ALS patients, Free Radic. Biol. Med. 29 (2000) 652–658. [146] Y. Ihara, K. Nobukuni, H. Takata, T. Hayabara, Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation, Neurol. Res. 27 (2005) 105–108. [147] N. Aguirre, M.F. Beal, W.R. Matson, M.B. Bogdanov, Increased oxidative damage to DNA in an animal model of amyotrophic lateral sclerosis, Free Radic. Res. 39 (2005) 383–388. [148] H. Warita, T. Hayashi, T. Murakami, Y. Manabe, K. Abe, Oxidative damage to mitochondrial DNA in spinal motoneurons of transgenic ALS mice, Brain Res. Mol. Brain Res. 89 (2001) 147–152. [149] L.J. Martin, Z. Liu, K. Chen, A.C. Price, Y. Pan, J.A. Swaby, W.C. Golden, Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death, J. Comp. Neurol. 500 (2007) 20–46. [150] G.M. Borthwick, M.A. Johnson, P.G. Ince, P.J. Shaw, D.M. Turnbull, Mitochondrial enzyme activity in amyotrophic lateral sclerosis: implications for the role of mitochondria in neuronal cell death, Ann. Neurol. 46 (1999) 787–790. [151] T. Murata, C. Ohtsuka, Y. Terayama, Increased mitochondrial oxidative damage and oxidative DNA damage contributes to the neurodegenerative process in sporadic amyotrophic lateral sclerosis, Free Radic. Res. 42 (2008) 221–225. [152] L.F. Barbosa, F.M. Cerqueira, A.F. Macedo, C.C. Garcia, J.P. Angeli, R.I. Schumacher, M.C. Sogayar, O. Augusto, M.T. Carrì, P. Di Mascio, et al., Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS, Biochim. Biophys. Acta 1802 (2010) 462–471. [153] S.L. Rulten, A. Rotheray, R.L. Green, G.J. Grundy, D.A. Moore, F. GómezHerreros, M. Hafezparast, K.W. Caldecott, PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage, Nucleic Acids Res. 42 (2014) 307–314. [154] W. Duan, X. Li, J. Shi, Y. Guo, Z. Li, C. Li, Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell, Neuroscience 169 (2010) 1621–1629. [155] F. Coppedè, An overview of DNA repair in amyotrophic lateral sclerosis, Scientific World Journal 11 (2011) 1679–1691. [156] Z.L. Olkowski, Mutant AP endonuclease in patients with amyotrophic lateral sclerosis, Neuroreport 9 (1998) 239–242. [157] C. Hayward, S. Colville, R.J. Swingler, D.J.H. Brock, Molecular genetic analysis of the APEX nuclease gene in amyotrophic lateral sclerosis, Neurology 52 (1999) 1899–1901. [158] J. Tomkins, S. Dempster, S.J. Banner, M.R. Cookson, P.J. Shaw, Screening of AP endonuclease as a candidate gene for amyotrophic lateral sclerosis (ALS), Neuroreport 11 (2000) 1695–1697. [159] M.J. Greenway, M.D. Alexander, S. Ennis, B.J. Traynor, B. Corr, E. Frost, A. Green, O. Hardiman, A novel candidate region for ALS on chromosome 14q11.2, Neurology 63 (2004) 1936–1938. [160] F. Coppedè, A. Lo Gerfo, C. Carlesi, S. Piazza, M. Mancuso, L. Pasquali, L. Murri, L. Migliore, G. Siciliano, Lack of association between the APEX1 Asp148Glu polymorphism and sporadic amyotrophic lateral sclerosis, Neurobiol. Aging 31 (2010) 353–355. [161] F. Coppedè, M. Mancuso, A. Lo Gerfo, C. Carlesi, S. Piazza, A. Rocchi, L. Petrozzi, C. Nesti, D. Micheli, A. Bacci, Association of the hOGG1 Ser326Cys polymorphism with sporadic amyotrophic lateral sclerosis, Neurosci. Lett. 420 (2007) 163–168. [162] F. Coppedè, F. Migheli, A. Lo Gerfo, M.R. Fabbrizi, C. Carlesi, M. Mancuso, S. Corti, N. Mezzina, R. del Bo, G.P. Comi, Association study between XRCC1 gene polymorphisms and sporadic amyotrophic lateral sclerosis, Amyotroph. Lateral Scler. 11 (2010) 122–124. [163] F. Fang, D.M. Umbach, Z. Xu, W. Ye, D.P. Sandler, J.A. Taylor, F. Kamel, No association between DNA repair gene XRCC1 and amyotrophic lateral sclerosis, Neurobiol. Aging 33 (2012), 1015.e25–1015.e26. [164] G.K. Dhaliwal, R.P. Grewal, Mitochondrial DNA deletion mutation levels are elevated in ALS brains, Neuroreport 11 (2000) 2507–2509. [165] S. Vielhaber, D. Kunz, K. Winkler, F.R. Wiedemann, E. Kirches, H. Feistner, H.J. Heinze, C.E. Elger, W. Schubert, W.S. Kunz, Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis, Brain 123 (2000) 1339–1348. [166] L.S. Ro, S.L. Lai, C.M. Chen, S.T. Chen, Deleted 4977-bp mitochondrial DNA mutation is associated with sporadic amyotrophic lateral sclerosis: a hospitalbased case–control study, Muscle Nerve 28 (2003) 737–743. [167] C. Mawrin, E. Kirches, G. Krause, F.R. Wiedemann, C.K. Vorwerk, B. Bogerts, H.U. Schildhaus, K. Dietzmann, R.R. Schneider-Stock, Single-cell analysis of mtDNA deletion levels in sporadic amyotrophic lateral sclerosis, Neuroreport 15 (2004) 939–943. [168] F.R. Wiedemann, G. Manfredi, C. Mawrin, M.F. Beal, E.A. Schon, Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients, J. Neurochem. 80 (2002) 616–625.

Please cite this article in press as: F. Coppedè, L. Migliore, DNA damage in neurodegenerative diseases, Mutat. Res.: Fundam. Mol. Mech. Mutagen. (2014), http://dx.doi.org/10.1016/j.mrfmmm.2014.11.010

G Model MUT-11405; No. of Pages 14 14

ARTICLE IN PRESS F. Coppedè, L. Migliore / Mutation Research xxx (2014) xxx–xxx

[169] L. Artuso, S. Zoccolella, P. Favia, A. Amati, R. Capozzo, G. Logroscino, L. Serlenga, I. Simone, G. Gasparre, V. Petruzzella, Mitochondrial genome aberrations in skeletal muscle of patients with motor neuron disease, Amyotroph. Lateral Scler. Frontotemporal. Degener. 14 (2013) 261–266. [170] C.J. Ingram, M.E. Weale, C.A. Plaster, K.E. Morrison, E.F. Goodall, H.S. Pall, M. Beck, S. Jablonka, M. Sendtner, E.M. Fisher, et al., Analysis of European case-control studies suggests that common inherited variation in mitochondrial DNA is not involved in susceptibility to amyotrophic lateral sclerosis, Amyotroph. Lateral Scler. 13 (2012) 341–346. [171] M. Wong, B. Gertz, B.A. Chestnut, L.J. Martin, Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS, Front. Cell. Neurosci. 7 (2013) 279.

[172] W.Y. Wang, L. Pan, S.C. Su, E.J. Quinn, M. Sasaki, J.C. Jimenez, I.R. Mackenzie, E.J. Huang, L.H. Tsai, Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons, Nat. Neurosci. 16 (2013) 1383– 1391. [173] H. Qiu, S. Lee, Y. Shang, W.Y. Wang, K.F. Au, S. Kamiya, S.J. Barmada, S. Finkbeiner, H. Lui, C.E.A.A. Carlton, et al., ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects, J. Clin. Invest. 124 (2014) 981–999. [174] M.M. Dobbin, R. Madabhushi, L. Pan, Y. Chen, D. Kim, J. Gao, B. Ahanonu, P.C. Pao, Y. Qiu, Y. Zhao, L.H. Tsai, SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons, Nat. Neurosci. 16 (2013) 1008– 1015.

Please cite this article in press as: F. Coppedè, L. Migliore, DNA damage in neurodegenerative diseases, Mutat. Res.: Fundam. Mol. Mech. Mutagen. (2014), http://dx.doi.org/10.1016/j.mrfmmm.2014.11.010

DNA damage in neurodegenerative diseases.

Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affe...
1KB Sizes 2 Downloads 29 Views