6436 Nucleic Acids Research, Vol. 18, No. 21
DNA sequence of lipoprotein lipase cDNA cloned from human monocytic leukemia THP-1 cells Atsuko Takagi, Yasuyuki Ikeda and Akira Yamamoto Department of Etiology and Pathophysiology, National Cardiovascular Center Research Institute, Fujishirodai, Suita, Osaka 565, Japan EMBL accession no. X54516
Submitted September 26, 1990
Lipoprotein lipase (LPL) is a key enzyme to catabolize triglyceride-rich lipoproteins at the first step of their metabolism in circulation. A deficiency of LPL activity is known to result in Type I hyperlipoproteinemia with severe fasting chylomicronemia. LPL gene is expressed in a number of tissues including adipose tissue, muscle, placenta, and kidney, but not in liver (1). LPL gene is also expressed in macrophage-like cells (THP-l-MO) derived from human THP-1 cells treated with phorbol 12-myristate 13-acetate (PMA) (2, 3). The cDNA (HLC601) coding for LPL was cloned from THP-1-MO cDNA library in lambda gtlO by hybridization with the synthetic oligonucleotide of human adipose tissue LPL cDNA cloned by Wion et al. (1). HLC601 contained the complete coding region and both DNA strands were sequenced by the Sanger's method (4). The sequence of the coding region for LPL from THP-1-MO was identical to those from adipose tissue (1) and placental source (5). The results indicate that LPL cDNA from THP-1-M4 is a useful tool to study a physiological role of LPL gene expression in human macrophages. 1 71 141 211 281 351 421 491 561 631 701 771 841
911 981 1051 1121 1191 1261 1331 1401 1471 1541 1611
CCACTTCTAG CTGCCCTGCC ATCCCCTTTA CTCCAGCCTC CGGCTCAGCC GGCTCATCAG GAG&AgGAGA GCAAAGCCCT GCTCGTGCTG GAGGGGTGGC CGCCGCCGAC CAAAGAAGAG TGAAGACACA GCTGAGGACA CTTGCCACCT AATCACAGCA GCAAAACCTT CATGGTGATC CAAAACTTGT GGCCGCCCTG TACAAGAGAG GGCTCAGGAG CATTACCCAG TGTCCGCGGG AACTGGATGG AGGAGGAGTT TAACTACCCT ATGCTGCTGG CATTGCAGGA AGTCTGACCA ACCTAACTTT GAGTATGCAG AAGCCCCGAG CACACATTCA CCAGAGGGTC CCCTGGTCGA ACCCGAATGG AGGTACTTTT CAGCCAGGAT ACTTGGAGAT GTGGACCAGC TAGTGAAGTG TTGAATGAAG AAAATCCAAG TAAGGCCTAC TGAGTTGTAG AAAGAACCGC TGCAACAATC CAAAATGTAC CTGAAGACTC GTTCTCAGAT TCTGGGACTG AGAGTGAAAC CCATACCAAT
GTGAGAACAT GGTAGATATT TGGTGGAGCA TCTTCTGTTC TGACAAGTCT TC
CCCATTCACT CTGCCTGAAG TCATGTTGAA CGCCATTCAG GTGTCTCATT AGTCAGGCTG
GGAGAACTAC GTCCCGGCTT TAGGGAGAAA CTGAATAAGA
ACKNOWLEDGEMENT This work was supported in part by the grant No. 01580206 from the Ministry of Education, Science and Culture of Japan.
REFERENCES 1. Wion,K.L., Kirchgessner,T.G., Lusis,A.J., Schotz,M.C. and Lawn,R.M. (1987) Science 235, 1638-1641. 2. Tajima,S., Hayashi,R., Tsuchiya,S., Miyake,Y. and Yamamoto,A. (1985) Biochem. Biophys. Res. Commun. 12, 526-531. 3. Auwerx,J.H., Deeb,S., Brunzell,J.D., Peng,R. and Chait,A. (1988) Biochemistry 27, 2651-2655. 4. Sanger,F. (1981) Science 214, 1205-1210. 5. Gotoda,T., Senda,M., Gamou,T., Funichi,Y. and Oka,K. (1989) Nucl. Acids Res. 17, 2351.
AAGGGCGACT TCGGTCCGCG ACTCTGGCCG ATTTTATCGA CATTCCCGGA CATGGCTGGA AACCAGACTC CTACACCAAA CTGGACAATG ATAAGAAAGT TCGTCTTTCT AGCATTGGAA GTAACATTGG
CTCCCACGAG AGGTGCAGTT TGGGCTATGA GCCCTACAAA CAGGCCTTTG TTTCCACAAA GCTCAAATGG AAGATCAGAG TGCAGAAAGG AAACTGGGCG
TGCTCAGCGC CCTTGCAGCT TGTGGCTCCA CATCGAAAGT GTAGCAGAGT CGGTAACAGG CAATGTCATT CTGGTGGGAC TCCATCTCTT CAACAGAATT CCTGATGATG TCCAGAAACC AGAAGCTATC CGCTCCATTC CCAAGGAAGC GATCAATAAA GTCTTCCATT AGATTTCTCT TAAGACCTAC AAGAGTGATT TAAAAGCAGG AAAGGCACCT AATCTACAGA
CAAACCGCGG CCTCCAGAGG GAGTCTGACC AAATTTGCCC CCGTGGCTAC AATGTATGAG GTGGTGGACT AGGATGTGGC GGGATACAGC ACTGGCCTCG CAGATTTTGT AGTTGGGCAT CGCGTGATTG ATCTCTTCAT CTTTGAGAAA GTCAGAGCCA ACCAAGTAAA GTATGGCACC TCCTTCCTAA CATACTTTAG AGAGACTCAG GCGGTATTTG ACAAAGAACG
CTCCAGCCCT GACGCGCCCC GCCTCCCGCG TAAGGACCCC CTGTCATTTC AGTTGGGTGC GGCTGTCACG CCGGTTTATC CTTGGAGCCC ATCCAGCTGG AGACGTCTTA GTTGACATTT CAGAGAGAGG CGACTCTCTG GGGCTCTGCT AAAGAAGCAG GATTCATTTT GTGGCCGAGA TTTACACAGA CTGGTCAGAC AAAAAGGTGA TGAAATGCCA GCATGTGAAT