research papers 1. Introduction

Acta Crystallographica Section C

Structural Chemistry

In order to design new crystalline forms of a compound with different physical properties, especially of active pharmaceutical ingredients, cocrystallization is a versatile and powerful

ISSN 2053-2296

Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor–donor– acceptor/donor–acceptor–donor synthon Wilhelm Maximilian Hu ¨tzler and Ernst Egert* Institut fu¨r Organische Chemie und Chemische Biologie, Goethe-Universita¨t Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany Correspondence e-mail: [email protected] Received 28 January 2015 Accepted 10 February 2015

The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C5H6N2OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N—H  O/N— H  N/N—H  S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl2-thiouracil–2,4-diaminopyrimidine–1-methylpyrrolidin-2-one (1/1/2), C5H6N2OSC4H6N42C5H9NO, (I), 6-methyl-2-thiouracil–2,4-diaminopyrimidine (1/1), C5H6N2OSC4H6N4, (II), 6-methyl-2-thiouracil–2,4-diaminopyrimidine–N,N-dimethylacetamide (2/1/2), 2C5H6N2OSC4H6N42C4H9NO, (III), 6-methyl-2-thiouracil–2,4-diaminopyrimidine–N,N-dimethylformamide (2/1/2), C5H6N2OS0.5C4H6N4C3H7NO, (IV), 2,4,6triaminopyrimidinium 6-methyl-2-thiouracilate–6-methyl-2thiouracil–N,N-dimethylformamide (1/1/2), C4H8N5+C5H5N2OSC5H6N2OS2C3H7NO, (V), 6-methyl-2-thiouracil–6amino-3H-isocytosine–N,N-dimethylformamide (1/1/1), C5H6N2OSC4H6N4OC3H7NO, (VI), and 6-methyl-2-thiouracil–6amino-3H-isocytosine–dimethyl sulfoxide (1/1/1), C5H6N2OSC4H6N4OC2H6OS, (VII). Whereas in cocrystal (I) an R22(8) interaction similar to the Watson–Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)–(VII) contain the triply hydrogen-bonded ADA/DAD N—H  O/N—H  N/ N—H  S synthon and show a one-dimensional hydrogenbonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV). Keywords: antithyroid drug; crystal engineering; cocrystallization; crystal structure; 6-methyl-2-thiouracil; hydrogen bonding; MTU. Acta Cryst. (2015). C71, 229–238

method (Blagden et al., 2007; Shan & Zaworotko, 2008; Schultheiss & Newman, 2009). A key step within the development of the crystallization strategy is the identification of suitable coformers. Thus, different tools of crystal engineering are usually applied. One of the most important design elements is hydrogen bonds, since they are highly directional and therefore present a good predictability once the preferred interaction motif of the compounds has been determined (Etter, 1991; Prins et al., 2001). For example, triply hydrogenbonded synthons show a high stability and are often used as potential building blocks (Desiraju, 1995, 2007; Aakero¨y, 1997). The combination of three hydrogen bonds gives three possible synthon types, viz. AAA/DDD, AAD/DDA or ADA/ DAD (D = donor and A = acceptor). When the relative stability of these three synthons is evaluated, secondary interactions must be taken into account. The synthon AAA/ DDD, which contains solely attractive secondary interactions,

doi:10.1107/S2053229615002867

# 2015 International Union of Crystallography

229

research papers Table 1 Crystallization conditions for (I)–(VII). NMP is 1-methylpyrrolidin-2-one, DMAC is N,N-dimethylacetamide, DMF is N,N-dimethylformamide and DMSO is dimethyl sulfoxide. Crystal

MTU (mg, mmol)

Coformer (mg, mmol)

Solvent

Temperature (K)

(I) (II) (III) (IV) (V) (VI) (VII)

4.0, 0.028 2.0, 0.014 2.0, 0.014 2.0, 0.014 3.9, 0.028 4.5, 0.032 4.5, 0.032

1.6, 1.5, 1.5, 1.5, 1.8, 1.8, 2.0,

NMP (58 ml) DMF (32 ml) DMAC (75 ml) DMF (32 ml) DMF (188 ml) DMF (224 ml) DMSO (62 ml)

295 323 295 295 323 295 323

0.015 0.014 0.014 0.014 0.014 0.014 0.016

is therefore more stable than the AAD/DDA motif where an equal number of attractive and repulsive secondary interactions is observed. On the other hand, the latter is more stable than the ADA/DAD motif, which shows only repulsive secondary interactions (Jorgensen & Pranata, 1990; Pranata et al., 1991). The antithyroid drug 6-methyl-2-thiouracil (Hershman & Van Middlesworth, 1962), in the following referred to as MTU, exhibits an ADA and an AD binding site. A search of the Cambridge Structural Database (CSD, Version 5.36 of November 2014, plus one update; Groom & Allen, 2014) revealed that no cocrystals of MTU are known. Therefore, we decided to cocrystallize MTU with 2,4-diaminopyrimidine (DAPY), 2,4,6-triaminopyrimidine (TAPY) and 6-amino-3Hisocytosine (AICT), which show complementary DAD hydrogen-bonding sites. The experiments were supposed to validate if the ADA/DAD N—H  O/N—H  N/N—H  S synthon is formed or if other motifs are preferred instead.

H atoms bonded to N atoms were refined isotropically with ˚ . Their isotropic the N—H distances restrained to 0.88 (2) A displacement parameters were coupled to the Ueq parameters of the parent N atoms, with Uiso(H) = 1.2Ueq(N). In (III), H atoms bonded to minor-occupied atom N410 were refined ˚ and Uiso(H) = using a riding model, with N—H = 0.88 A 1.2Ueq(N). In (I) and (VI), an isotropic extinction factor was refined, and in (I), one reflection was omitted. In (IV) and (V), the H atoms of the methyl group at atom C6A show a rotational disorder [site-occupancy factors for the predominant conformation = 0.66 (3) in (IV) and 0.71 (3) in (V)]. In (II), (III) and (IV), the DAPY molecules are disordered [site-occupancy factors = 0.5 for (II) and (IV), and 0.818 (5) for the major-occupied orientation in (III)]. The two DAPY molecules in (II) lie perpendicular to crystallographic mirror planes along C2B/C, N21B/C and C5B/C. In (IV), the DAPY molecule is disordered over a crystallographic twofold rotation axis along C2B, N21B and C5B. The DAPY molecule in (III) is disordered over a pseudo-mirror plane along C2C, N21C and C5C, perpendicular to the molecular plane. In (III), the DMAC molecules are disordered over a pseudo-mirror plane along O21X/Y and C32X/Y, perpendicular to the molecular plane [site-occupancy factor for the major-occupied orientation = 0.898 (4) for X and 0.615 (6) for Y]. For both DMAC molecules, similarity restraints were applied for the 1,2- and 1,3-distances, as well as similar-ADP and rigid-bond restraints (SIMU and DELU in SHELXL2014; Sheldrick, 2015).

3. Results and discussion

2. Experimental 2.1. Synthesis and crystallization

Isothermal solvent evaporation experiments under different conditions with the commercially available compounds and various solvents yielded the seven cocrystal structures (I)–(VII). In Table 1, the crystallization conditions are summarized. All solvents were used as supplied without further purification.

6-Methyl-2-thiouracil–2,4-diaminopyrimidine–1-methylpyrrolidin-2-one (1/1/2), (I), crystallizes in the monoclinic space group C2/c with one MTU molecule (A), one DAPY molecule (B) and two NMP molecules (X and Y) within the asymmetric unit. A and B form an R22 (8) hydrogen-bonding pattern (Bernstein et al., 1995) consisting of one N—H  O and one

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms, except those of the disordered solvent molecules, were initially located by difference Fourier synthesis. Subsequently, all H atoms bonded to C atoms were refined using a riding model, with ˚ , secondary C—H = 0.99 A ˚ and methyl C—H = 0.98 A ˚ aromatic C—H = 0.95 A, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for secondary and aromatic H atoms. For the H atoms of the methyl groups, free rotation about their local threefold axis was allowed, except for the disordered methyl groups of molecule A in (IV) and (V), and for those of the disordered N,N-dimethylacetamide (DMAC) molecules in (III).

230

Hu¨tzler and Egert



Seven cocrystals of C5H6N2OS

Figure 1 A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Suffixes ‘A’ refer to the MTU molecule, ‘B’ to the DAPY molecule and ‘X’ and ‘Y’ to the two NMP molecules. Acta Cryst. (2015). C71, 229–238

research papers Table 2 Experimental details.

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A , ,  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F2 > 2(F2)], wR(F2), S No. of reflections No. of parameters No. of restraints H-atom treatment ˚ 3)  max,  min (e A

(I)

(II)

(III)

(IV)

C5H6N2OSC4H6N42C5H9NO 450.57 Monoclinic, C2/c 173 13.9475 (5), 8.1618 (3), 40.9157 (14) 90, 98.148 (3), 90 4610.7 (3) 8 Mo K 0.18 0.38  0.28  0.24

C5H6N2OSC4H6N4 252.31 Orthorhombic, Pnma 173 6.9996 (8), 19.223 (2), 17.143 (2) 90, 90, 90 2306.6 (4) 8 Mo K 0.28 0.14  0.10  0.09

2C5H6N2OSC4H6N42C4H9NO 568.73 Triclinic, P1 173 8.2095 (7), 12.8069 (11), 14.3391 (13) 89.914 (7), 76.230 (7), 83.418 (7) 1454.1 (2) 2 Mo K 0.23 0.30  0.22  0.18

C5H6N2OS0.5C4H6N4C3H7NO 270.34 Monoclinic, C2/c 173 14.9786 (15), 8.2010 (11), 22.568 (2) 90, 99.899 (8), 90 2731.0 (5) 8 Mo K 0.24 0.55  0.15  0.09

Stoe IPDS II two-circle diffractometer Multi-scan (X-AREA; Stoe & Cie, 2001) 0.940, 0.959 17630, 4449, 3920

Stoe IPDS II two-circle diffractometer Multi-scan (X-AREA; Stoe & Cie, 2001) 0.965, 0.977 11786, 2234, 1279

Stoe IPDS II two-circle diffractometer Multi-scan (X-AREA; Stoe & Cie, 2001) 0.939, 0.961 11080, 5400, 4514

Stoe IPDS II two-circle diffractometer Multi-scan (X-AREA; Stoe & Cie, 2001) 0.957, 0.980 10452, 2624, 2026

0.059 0.616

0.103 0.609

0.030 0.608

0.047 0.615

0.044, 0.122, 1.04 4449 302 6 H atoms treated by a mixture of independent and constrained refinement 0.26, 0.22

0.052, 0.111, 0.93 2234 197 8 H atoms treated by a mixture of independent and constrained refinement 0.26, 0.23

0.039, 0.105, 1.05 5400 417 264 H atoms treated by a mixture of independent and constrained refinement 0.34, 0.26

0.040, 0.095, 1.05 2624 188 5 H atoms treated by a mixture of independent and constrained refinement 0.19, 0.18

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A , ,  ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2(I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F2 > 2(F2)], wR(F2), S No. of reflections No. of parameters No. of restraints H-atom treatment ˚ 3)  max,  min (e A

(V)

(VI)

(VII)

C4H8N5+C5H5N2OSC5H6N2OS2C3H7NO 555.69 Monoclinic, P21/m 173 8.2680 (8), 6.6000 (4), 25.043 (2) 90, 98.887 (7), 90 1350.16 (19) 2 Mo K 0.25 0.38  0.32  0.18

C5H6N2OSC4H6N4OC3H7NO

C5H6N2OSC4H6N4OC2H6OS

341.40 Monoclinic, P21/n 173 7.3559 (6), 30.068 (2), 8.1263 (7) 90, 115.534 (6), 90 1621.8 (2) 4 Mo K 0.23 0.40  0.28  0.13

346.43 Monoclinic, P21/c 173 8.2520 (7), 23.9532 (19), 8.2133 (6) 90, 102.496 (6), 90 1585.0 (2) 4 Mo K 0.36 0.22  0.21  0.07

Stoe IPDS II two-circle diffractometer Multi-scan (X-AREA; Stoe & Cie, 2001) 0.912, 0.956 10981, 2836, 2588

Stoe IPDS II two-circle diffractometer Multi-scan (X-AREA; Stoe & Cie, 2001) 0.925, 0.970 12580, 3119, 2686

Stoe IPDS II two-circle diffractometer Multi-scan (X-AREA; Stoe & Cie, 2001) 0.925, 0.978 13609, 3229, 2706

0.032 0.615

0.088 0.617

0.064 0.625

0.037, 0.102, 1.15 2836 244 10 H atoms treated by a mixture of independent and constrained refinement 0.23, 0.25

0.047, 0.137, 1.05 3119 233 7 H atoms treated by a mixture of independent and constrained refinement 0.17, 0.35

0.047, 0.113, 1.06 3229 223 7 H atoms treated by a mixture of independent and constrained refinement 0.35, 0.32

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXD (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2008), XP in SHELXTL-Plus (Sheldrick, 2008), and publCIF (Westrip, 2010).

research papers

Figure 2 A partial packing diagram for (I). Hydrogen bonds are shown as dashed lines. The suffixes are as in Fig. 1. [Symmetry codes: (i) x + 1, y, z + 12; (ii) x + 12, y + 12, z.]

N—H  N hydrogen bond, similar to the interactions in the Watson–Crick adenine/uracil base pair, yielding dimers (Fig. 1). Each of the two molecules forms one additional hydrogen bond to the solvent molecules, whereby A is linked to X and B to Y. Molecules A, B and X show a coplanar ˚) arrangement (r.m.s. deviation for all non-H atoms = 0.064 A and enclose a dihedral angle of 64.89 (4) with the mean plane through all non-H atoms of Y. In the crystal, further hydrogen bonds are formed, viz. a pair of crystallographically equivalent N—H  N R22 (8) hydrogen bonds that connect B to another DAPY molecule, which enclose a dihedral angle of 70.44 (3) , and one N—H  O hydrogen bond, establishing a connection to an additional NMP molecule Y (Fig. 2 and Table 3). As a result, a two-dimensional network parallel to (001) is formed whereby the mean planes of the MTU–DAPY dimers are orientated parallel to (112). The asymmetric unit of cocrystal (II), namely 6-methyl-2thiouracil–2,4-diaminopyrimidine (1/1) (space group Pnma), comprises one MTU molecule (A) and two independent halves of disordered DAPY molecules (B and C). A and B are linked via R22 (8) N—H  N and N—H  O hydrogen bonds. Due to the disorder of B, an additional N—H  S hydrogen bond is formed between atoms N41B and S21A, thus establishing the desired ADA/DAD interaction (Fig. 3). Molecules

A and C are connected by an N—H  N hydrogen bond and also, as a result of the disorder of atom N41C, form an N— H  S hydrogen bond, resulting in an R22 (8) pattern. The molecules are tilted against each other, enclosing a dihedral angle of 33.13 (12) between molecules A and B, and 52.85 (12) between molecules A and C, with respect to the planes through all non-H atoms of each molecule. In the crystal packing, molecules form ‘double’ chains along the b axis stabilized by additional N—H  O hydrogen bonds [Fig. 4, Fig. S1 (in the Supporting information) and Table 4]. The cocrystal 6-methyl-2-thiouracil–2,4-diaminopyrimidine–N,N-dimethylacetamide (2/1/2), (III), is triclinic (space group P1), with two MTU molecules (A and B), one disor-

Table 3 ˚ ,  ) for (I). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

Figure 3

N1A—H1A  O21X N3A—H3A  N1B N21B—H21B  O41A N21B—H22B  O21Y N41B—H41B  N3Bi N41B—H42B  O21Yii

0.88 (1) 0.91 (1) 0.88 (2) 0.87 (2) 0.88 (2) 0.87 (2)

1.90 (2) 1.96 (1) 2.01 (2) 2.07 (2) 2.17 (2) 2.02 (2)

2.7413 (17) 2.8674 (18) 2.8914 (18) 2.9351 (19) 3.0334 (19) 2.8565 (19)

162 (2) 175 (2) 175 (2) 173 (2) 166 (2) 159 (2)

A perspective view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Suffixes ‘A’ refer to the MTU molecule and ‘B’ and ‘C’ to the two independent halves of disordered DAPY molecules. Atoms without labels are displayed for the sake of clarity but are not part of the asymmetric unit. Atoms N41B and N41C are disordered and for each only one of the two equally occupied positions is shown.

Symmetry codes: (i) x þ 1; y; z þ 12; (ii) x þ 12; y þ 12; z.

232

Hu¨tzler and Egert



Seven cocrystals of C5H6N2OS

Acta Cryst. (2015). C71, 229–238

research papers Table 4 ˚ ,  ) for (II). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

N1A—H1A  N3C N3A—H3A  N3B N21B—H21B  O41A N41B—H41B  S21A N21C—H21C  O41Ai N41C—H41C  S21A

0.89 (2) 0.90 (2) 0.86 (2) 0.87 (2) 0.87 (2) 0.89 (2)

2.00 (2) 1.97 (2) 2.16 (2) 2.47 (4) 2.33 (2) 2.37 (2)

2.883 (4) 2.868 (3) 2.993 (3) 3.258 (6) 3.137 (3) 3.250 (6)

171 (3) 174 (3) 164 (3) 150 (6) 154 (3) 170 (6)

Symmetry code: (i) x þ 1; y þ 1; z þ 1.

Figure 4 A partial packing diagram for (II). Hydrogen bonds are shown as dashed lines. The suffixes are as in Fig. 3. Only one position for each of disordered atoms N41B and N41C is shown. [Symmetry code: (i) x + 1, y + 1, z + 1.]

dered DAPY molecule (C) and two disordered DMAC molecules (X and Y) in the asymmetric unit. All molecules show an almost coplanar arrangement (Fig. 5; r.m.s. deviation for all ˚ ). Molecules A and C form the ADA/ non-H atoms = 0.126 A DAD N—H  S/N—H  N/N—H  O interaction when C adopts its major-occupied orientation, while R22 (8) N—H  N and N—H  O hydrogen bonds are formed if the minoroccupied orientation of C is present. For the interactions

Figure 5 A perspective view of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Suffixes ‘A’ and ‘B’ refer to the MTU molecules, ‘C’ to the disordered DAPY molecule and ‘X’ and ‘Y’ to the two disordered DMAC molecules. Dashed lines indicate hydrogen bonds. Only the major-occupied sites of the disordered molecules are shown.

Figure 6 A partial packing diagram for (III). Hydrogen bonds are shown as dashed lines. The suffixes are as in Fig. 5. For disordered molecules C, X and Y, only the major-occupied sites are displayed. [Symmetry code: (i) x  1, y, z.] Acta Cryst. (2015). C71, 229–238

Hu¨tzler and Egert



Seven cocrystals of C5H6N2OS

233

research papers

Figure 7 A perspective view of (IV), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Suffixes ‘A’ refer to the MTU molecule, ‘B’ to one half of a disordered DAPY molecule and ‘X’ to the DMF molecule. Atoms without labels are displayed for the sake of clarity but are not part of the asymmetric unit. Atom N41B adopts two equally occupied positions of which only one is shown.

between molecules B and C, the hydrogen-bonding pattern is vice versa. Each of the MTU molecules is linked to one of the DMAC molecules via one N—H  O hydrogen bond, connecting A with X and B with Y. In the crystal, additional N—H  O hydrogen bonds yield chains running along the a axis, with the mean plane through all non-H atoms lying parallel to (014) (Fig. 6 and Table 5). The fourth cocrystal between MTU and DAPY, namely 6-methyl-2-thiouracil–2,4-diaminopyrimidine–N,N-dimethylformamide (2/1/2), (IV), crystallizes in the monoclinic space group C2/c with one MTU molecule (A), one half of a disordered DAPY molecule (B) and one DMF molecule (X) in the asymmetric unit. Molecules A, B and C show a nearly coplanar arrangement (Fig. 7; r.m.s. deviation for all non-H atoms = ˚ ). The hydrogen-bonding pattern is similar to that 0.103 A observed in (III). Molecules A and B form ADA/DAD interactions or an R22 (8) hydrogen-bonding pattern, depending

Figure 8 A partial packing diagram for (IV). Hydrogen bonds are shown as dashed lines. The suffixes are as in Fig. 7. Only one position is shown for disordered atom N41B. [Symmetry code: (i) x, y + 1, z.]

Figure 9 A perspective view of (V), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Suffixes ‘A’ refer to the neutral MTU molecule, ‘B’ to the 6-methyl-2-thiouracilate ion, ‘C’ to the 2,4,6-triaminopyrimidinium ion and ‘X’ and ‘Y’ to the two DMF molecules.

234

Hu¨tzler and Egert



Seven cocrystals of C5H6N2OS

Acta Cryst. (2015). C71, 229–238

research papers Table 5

Table 6

˚ ,  ) for (III). Hydrogen-bond geometry (A

˚ ,  ) for (IV). Hydrogen-bond geometry (A

D—H  A

D—H

H  A

D  A

D—H  A

D—H  A

D—H

H  A

D  A

D—H  A

N1A—H1A  O21X N3A—H3A  N3C N1B—H1B  O21Y N3B—H3B  N1C N21C—H21C  O41B N21C—H22C  O41A N41C—H41C  S21A N41C—H42C  O41Ai N410 —H410   S21B N410 —H420   O41Bi

0.88 (2) 0.87 (2) 0.88 (2) 0.85 (2) 0.85 (2) 0.87 (2) 0.88 (2) 0.90 (2) 0.88 0.88

1.89 (2) 2.26 (2) 1.90 (2) 2.09 (2) 2.01 (2) 1.95 (2) 2.49 (2) 1.97 (2) 2.39 1.93

2.7447 (19) 3.120 (2) 2.766 (2) 2.936 (2) 2.856 (2) 2.822 (2) 3.365 (2) 2.862 (2) 3.234 (9) 2.755 (9)

165 (2) 171 (2) 168 (2) 175 (2) 175 (2) 178 (2) 172 (3) 174 (3) 161 155

N1A—H1A  O11X N3A—H3A  N3B N21B—H21B  O41A N41B—H41B  S21A N41B—H42B  O41Ai

0.87 (2) 0.88 (2) 0.87 (2) 0.87 (2) 0.88 (2)

1.84 (2) 2.15 (2) 1.97 (2) 2.52 (2) 1.96 (2)

2.702 (2) 3.030 (3) 2.8335 (19) 3.373 (3) 2.825 (4)

170 (2) 173 (2) 173 (2) 167 (4) 168 (5)

Symmetry code: (i) x  1; y; z.

on the orientation of the disordered DAPY molecule. The MTU molecule is linked to the solvent molecule via one N— H  O hydrogen bond. As in (III), the crystal packing is stabilized by an additional N—H  O hydrogen bond between molecule B and a symmetry-equivalent of molecule A, leading to a similar arrangement of chains, which are parallel to (201) (Fig. 8 and Table 6). The asymmetric unit of the structure of 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate–6-methyl-2-thiouracil– N,N-dimethylformamide (1/1/2), (V) (space group P21/m), contains one neutral MTU molecule (A), one 6-methyl-2thiouracilate ion (B) (systematic name: 4-methyl-6-oxo-2sulfanylidene-1,2,3,6-tetrahydropyrimidin-1-ide), which is formed from MTU by deprotonation at atom N3B, one 2,4,6triaminopyrimidinium ion (C), formed from TAPY by protonation at atom N3C, and two DMF molecules (X and Y), whereby all five entities are located on a crystallographic mirror plane. Both A and B show a three-point N—H  S/N— H  N/N—H  O hydrogen-bonding interaction with C, but the patterns are different. There is an ADA/DAD pattern between A and C, while an AAA/DDD motif is present

Symmetry code: (i) x; y þ 1; z.

Table 7 ˚ ,  ) for (V). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

N1A—H1A  O11X N3A—H3A  N1C N1B—H1B  O11Y N21C—H21C  O41A N21C—H22C  O41B N3C—H3C  N3B N41C—H41C  S21B N41C—H42C  O41Bi N61C—H61C  O41Ai N61C—H62C  S21A

0.88 (2) 0.88 (2) 0.87 (2) 0.88 (2) 0.86 (2) 0.89 (2) 0.87 (2) 0.87 (2) 0.87 (2) 0.86 (2)

1.82 (2) 2.31 (2) 2.00 (2) 2.02 (2) 1.95 (2) 2.16 (2) 2.38 (2) 2.03 (2) 2.03 (2) 2.49 (2)

2.701 (2) 3.169 (3) 2.839 (3) 2.901 (3) 2.811 (3) 3.049 (3) 3.241 (2) 2.899 (3) 2.905 (3) 3.336 (2)

177 (3) 167 (2) 162 (3) 178 (3) 177 (3) 178 (2) 171 (3) 177 (3) 178 (3) 167 (3)

Symmetry code: (i) x þ 1; y; z.

between B and C (Fig. 9). In the crystal, two additional N— H  O hydrogen bonds are formed which establish an R24 (12) hydrogen-bonding pattern, leading to a one-dimensional network running along the a axis (Fig. 10 and Table 7). This arrangement is similar to that observed in (IV), but in contrast the two DMF molecules adopt different orientations, i.e. in the A/X molecule pair, the H atom at C1X points towards S21A, while that at C1Y in the B/Y pair points towards C61B. 6-Methyl-2-thiouracil–6-amino-3H-isocytosine–N,N-dimethylformamide (1/1/1), (VI), is also monoclinic (space

Figure 10 A partial packing diagram for (V). Hydrogen bonds are shown as dashed lines. The suffixes are as in Fig. 9. [Symmetry code: (i) x + 1, y, z.] Acta Cryst. (2015). C71, 229–238

Hu¨tzler and Egert



Seven cocrystals of C5H6N2OS

235

research papers Table 8 ˚ ,  ) for (VI). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

N1A—H1A  O11X N3A—H3A  N1B N21B—H21B  O41A N21B—H22B  O41Bi N3B—H3B  O41Bi N61B—H61B  O41Aii N61B—H62B  S21A

0.90 (2) 0.88 (2) 0.86 (2) 0.88 (2) 0.85 (2) 0.88 (2) 0.87 (2)

1.82 (2) 2.25 (2) 2.00 (2) 2.06 (2) 2.06 (2) 2.07 (2) 2.53 (2)

2.713 (2) 3.132 (2) 2.848 (2) 2.856 (2) 2.815 (2) 2.945 (2) 3.3708 (18)

172 (2) 175 (2) 170 (2) 151 (2) 149 (2) 172 (2) 163 (2)

Symmetry codes: (i) x  12; y þ 12; z  12; (ii) x þ 1; y; z þ 1.

Figure 11 A perspective view of (VI), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Suffixes ‘A’ refer to the MTU molecule, ‘B’ to the AICT molecule and ‘X’ to the DMF molecule.

group P21/n), with one MTU molecule (A), one AICT molecule (B) and one DMF molecule (X) in the asymmetric unit. A and B are connected into dimers by the ADA/DAD interaction and A and X are linked via a single N—H  O hydrogen bond (Fig. 11). In the crystal packing, three further

N—H  O hydrogen bonds are formed yielding R34 (14) and R12 (6) patterns which connect the A–B heterodimer with four adjacent dimers. As a result, layer-like ribbons are formed, with the mean plane through all non-H atoms oriented parallel to (101) (Fig. 12 and Table 8). The component molecules of the second cocrystal formed between MTU and AICT, 6-methyl-2-thiouracil–6-amino-3Hisocytosine–dimethyl sulfoxide (1/1/1), (VII), show the same hydrogen-bonding pattern as observed in (VI), but the crystal packing is somewhat different. The space group is P21/c and the asymmetric unit comprises one MTU molecule (A) and one AICT molecule (B), which are connected into a dimer via the ADA/DAD interaction, together with one solvent molecule (X), linked to A by a single N—H  O hydrogen bond (Fig. 13). As in (VI), three additional N—H  O hydrogen bonds form R34 (14) and R12 (6) patterns connecting the A–B heterodimer with four adjacent dimers (Fig. 14 and Table 9). In contrast to (VI), the resulting ribbons show a vaulted shape, with a dihedral angle of 71.80 (3) between the molecular planes of MTU molecules A and A(x, y + 32, z  12). As a

Figure 12 A partial packing diagram for (VI). Hydrogen bonds are shown as dashed lines. The suffixes are as in Fig. 11. [Symmetry codes: (i) x  12, y + 12, z  12; (ii) x + 1, y, z + 1.]

236

Hu¨tzler and Egert



Seven cocrystals of C5H6N2OS

Acta Cryst. (2015). C71, 229–238

research papers Table 9 ˚ ,  ) for (VII). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

N1A—H1A  O21X N3A—H3A  N1B N21B—H21B  O41A N21B—H22B  O41Bi N3B—H3B  O41Bi N61B—H61B  O41Aii N61B—H62B  S21A

0.88 (2) 0.88 (2) 0.88 (2) 0.86 (2) 0.90 (2) 0.86 (2) 0.87 (2)

1.89 (2) 2.26 (2) 1.97 (2) 2.10 (2) 1.98 (2) 2.06 (2) 2.55 (2)

2.758 (3) 3.132 (3) 2.836 (3) 2.886 (3) 2.807 (2) 2.916 (3) 3.386 (2)

167 (3) 171 (2) 174 (3) 153 (3) 153 (2) 171 (3) 162 (3)

Symmetry codes: (i) x; y þ 32; z  12; (ii) x; y; z þ 1.

result, in the crystal packing, a wave-like arrangement is observed (see Figs. S2 and S3 in the Supporting information), with the one-dimensional hydrogen bonding extending in the c-axis direction. A comparison of the structures of the seven cocrystals reveals that only in (I) is the desired ADA/DAD N—H  S/ N—H  N/N—H  O synthon not formed. In (III) and (IV), surprisingly, a 2:1 ratio of MTU and DAPY is found and, due to an orientational disorder of DAPY, a double ADA/DAD interaction is simulated. Also, in structure (V), a 2:1 ratio of MTU and the coformer is observed, but in this case a ‘true’ double ADA/DAD interaction is expected since the coformer TAPY possesses two DAD binding sites. However, only one ADA/DAD interaction is observed, while the second motif is changed into AAA/DDD due to proton transfer from MTU to TAPY. In (III) and (IV), the solvent molecules show the same orientation with respect to the S atom of the MTU molecules,

Figure 13 A perspective view of (VII), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds. Suffixes ‘A’ refer to the MTU molecule, ‘B’ to the AICT molecule and ‘X’ to the DMSO solvent molecule.

while in (V) the solvent molecules show two different orientations. Another difference becomes obvious when comparing the orientation of the C S groups in adjacent ribbons. While

Figure 14 A partial packing diagram for (VII). Hydrogen bonds are shown as dashed lines. The suffixes are as in Fig. 13. [Symmetry codes: (i) x, y + 32, z  12; (ii) x, y, z + 1.] Acta Cryst. (2015). C71, 229–238

Hu¨tzler and Egert



Seven cocrystals of C5H6N2OS

237

research papers these groups show a parallel orientation in (IV) and (V), they are antiparallel in (III). Structures (VI) and (VII) show identical hydrogen-bonding interactions and differ only in the packing of the resulting ribbons. In all structures exhibiting an ADA/DAD interaction [i.e. (II)–(VII)], one-dimensional networks are formed; in (III)–(VI), a layer-like arrangement is found and in (VII) undulated layers are observed. In conclusion, six of the seven cocrystal structures contain the ADA/DAD N—H  S/N—H  N/N—H  O synthon and only in one structure is a heterodimer with an AD/DA interaction formed instead. Hence, it is shown that the ADA/DAD synthon is a feasible building block for the design of cocrystals of MTU, leading to hydrogen-bonded one-dimensional networks with either chains or a layer-like arrangement of the molecules. We thank Dr Michael Bolte and Valeska Gerhardt for helpful discussions and Stephanie Klein for the preparation of cocrystals (VI) and (VII).

238

Hu¨tzler and Egert



Seven cocrystals of C5H6N2OS

References Aakero¨y, C. B. (1997). Acta Cryst. B53, 569–586. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Blagden, N., de Matas, M., Gavan, P. T. & York, P. (2007). Adv. Drug Deliv. Rev. 59, 617–630. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327. Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356. Etter, M. C. (1991). J. Phys. Chem. 95, 4601–4610. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Hershman, J. M. & Van Middlesworth, L. (1962). Endocrinology, 71, 94–100. Jorgensen, W. L. & Pranata, J. (1990). J. Am. Chem. Soc. 112, 2008–2010. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Pranata, J., Wierschke, S. G. & Jorgensen, W. L. (1991). J. Am. Chem. Soc. 113, 2810–2819. Prins, L. J., Reinhoudt, D. N. & Timmerman, P. (2001). Angew. Chem. Int. Ed. 40, 2382–2426. Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967. Shan, N. & Zaworotko, M. J. (2008). Drug Discov. Today, 13, 440–446. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Acta Cryst. (2015). C71, 229–238

supporting information

supporting information Acta Cryst. (2015). C71, 229-238

[doi:10.1107/S2053229615002867]

Cocrystals of 6-methyl-2-thiouracil: presence of the acceptor–donor– acceptor/donor–acceptor–donor synthon Wilhelm Maximilian Hützler and Ernst Egert Computing details For all compounds, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (IV), (V), (VI), (VII); SHELXD (Sheldrick, 2008) for (II), (III). Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015) for (I), (II), (III), (IV), (V), (VII); SHELXL3013 (Sheldrick, 2015) for (VI). For all compounds, molecular graphics: Mercury (Macrae et al., 2008) and XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010). (I) 6-Methyl-2-thiouracil–2,4-diaminopyrimidine–1-methylpyrrolidin-2-one (1/1/2) Crystal data C5H6N2OS·C4H6N4·2C5H9NO Mr = 450.57 Monoclinic, C2/c a = 13.9475 (5) Å b = 8.1618 (3) Å c = 40.9157 (14) Å β = 98.148 (3)° V = 4610.7 (3) Å3 Z=8

F(000) = 1920 Dx = 1.298 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 20467 reflections θ = 2.0–26.6° µ = 0.18 mm−1 T = 173 K Block, colourless 0.38 × 0.28 × 0.24 mm

Data collection Stoe IPDS II two-circle diffractometer ω scans Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001) Tmin = 0.940, Tmax = 0.959 17630 measured reflections

4449 independent reflections 3920 reflections with I > 2σ(I) Rint = 0.059 θmax = 25.9°, θmin = 2.0° h = −17→17 k = −10→10 l = −50→50

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.044 wR(F2) = 0.122 S = 1.04 4449 reflections 302 parameters 6 restraints

Acta Cryst. (2015). C71, 229-238

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0661P)2 + 2.2641P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.26 e Å−3 Δρmin = −0.22 e Å−3

sup-1

supporting information Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.0153 (12)

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N1A H1A C2A S21A N3A H3A C4A O41A C5A H5A C6A C61A H61A H61B H61C N1B C2B N21B H21B H22B N3B C4B N41B H41B H42B C5B H5B C6B H6B N1X C11X H11A H11B H11C C2X O21X

x

y

z

Uiso*/Ueq

0.20053 (9) 0.2103 (12) 0.27205 (10) 0.37186 (3) 0.25643 (9) 0.3035 (11) 0.17400 (11) 0.16813 (9) 0.10174 (11) 0.0429 0.11602 (11) 0.04551 (12) 0.0668 0.0419 −0.0186 0.39775 (9) 0.39090 (11) 0.31472 (11) 0.2685 (13) 0.3088 (14) 0.45418 (9) 0.53318 (11) 0.59609 (10) 0.5859 (14) 0.6495 (12) 0.54775 (12) 0.6035 0.47774 (12) 0.4858 0.20113 (12) 0.10974 (16) 0.0800 0.1206 0.0666 0.23073 (13) 0.18904 (10)

0.38539 (16) 0.424 (2) 0.41254 (18) 0.51727 (5) 0.35139 (16) 0.361 (2) 0.2659 (2) 0.21340 (17) 0.2464 (2) 0.1921 0.30425 (19) 0.2816 (2) 0.1910 0.3824 0.2566 0.38963 (16) 0.32839 (18) 0.2322 (2) 0.221 (3) 0.195 (3) 0.35313 (16) 0.44281 (19) 0.4652 (2) 0.416 (2) 0.521 (2) 0.51074 (19) 0.5742 0.48045 (19) 0.5265 0.57152 (19) 0.5073 (3) 0.4414 0.4387 0.5982 0.5613 (2) 0.48554 (17)

0.03379 (3) 0.0145 (4) 0.05938 (3) 0.05458 (2) 0.08908 (3) 0.1066 (4) 0.09475 (4) 0.12273 (3) 0.06674 (4) 0.0691 0.03690 (4) 0.00623 (4) −0.0067 −0.0069 0.0121 0.14669 (3) 0.17693 (3) 0.18013 (3) 0.1632 (4) 0.1996 (4) 0.20450 (3) 0.20177 (4) 0.22930 (3) 0.2477 (4) 0.2290 (5) 0.17109 (4) 0.1687 0.14504 (4) 0.1243 −0.08256 (3) −0.09833 (5) −0.0825 −0.1171 −0.1061 −0.05053 (4) −0.03060 (3)

0.0399 (3) 0.048* 0.0388 (3) 0.04795 (17) 0.0402 (3) 0.048* 0.0439 (4) 0.0569 (3) 0.0458 (4) 0.055* 0.0418 (3) 0.0523 (4) 0.078* 0.078* 0.078* 0.0429 (3) 0.0405 (3) 0.0533 (4) 0.064* 0.064* 0.0406 (3) 0.0403 (3) 0.0495 (3) 0.059* 0.059* 0.0444 (4) 0.053* 0.0446 (4) 0.054* 0.0557 (4) 0.0722 (6) 0.108* 0.108* 0.108* 0.0498 (4) 0.0636 (4)

Acta Cryst. (2015). C71, 229-238

sup-2

supporting information C3X H3X1 H3X2 C4X H4X1 H4X2 C5X H5X1 H5X2 N1Y C11Y H11D H11E H11F C2Y O21Y C3Y H3Y1 H3Y2 C4Y H4Y1 H4Y2 C5Y H5Y1 H5Y2

0.32337 (14) 0.3747 0.3130 0.35085 (17) 0.4062 0.3687 0.25957 (18) 0.2254 0.2763 0.28744 (13) 0.20338 (19) 0.2228 0.1579 0.1721 0.31855 (15) 0.27970 (11) 0.4097 (2) 0.4648 0.4017 0.4271 (2) 0.4915 0.4244 0.34745 (19) 0.3098 0.3747

0.6574 (2) 0.5886 0.7548 0.7080 (3) 0.6422 0.8254 0.6753 (3) 0.7788 0.6188 0.1377 (2) 0.2384 (3) 0.3426 0.1818 0.2595 0.0906 (3) 0.1220 (2) −0.0074 (4) 0.0461 −0.1192 −0.0142 (3) 0.0320 −0.1287 0.0870 (3) 0.0207 0.1833

−0.04226 (5) −0.0299 −0.0288 −0.07539 (6) −0.0808 −0.0753 −0.10055 (5) −0.1074 −0.1204 0.30168 (4) 0.30255 (6) 0.3134 0.3149 0.2800 0.27389 (4) 0.24569 (3) 0.28289 (7) 0.2743 0.2735 0.32012 (7) 0.3287 0.3279 0.33169 (5) 0.3456 0.3445

0.0616 (5) 0.074* 0.074* 0.0767 (6) 0.092* 0.092* 0.0703 (6) 0.084* 0.084* 0.0636 (4) 0.0819 (6) 0.123* 0.123* 0.123* 0.0627 (5) 0.0788 (5) 0.0910 (8) 0.109* 0.109* 0.0866 (7) 0.104* 0.104* 0.0731 (6) 0.088* 0.088*

Atomic displacement parameters (Å2)

N1A C2A S21A N3A C4A O41A C5A C6A C61A N1B C2B N21B N3B C4B N41B C5B C6B N1X C11X

U11

U22

U33

U12

U13

U23

0.0421 (6) 0.0424 (7) 0.0447 (2) 0.0407 (6) 0.0455 (8) 0.0594 (7) 0.0421 (8) 0.0410 (7) 0.0483 (9) 0.0463 (7) 0.0441 (7) 0.0533 (8) 0.0416 (6) 0.0417 (7) 0.0441 (7) 0.0450 (8) 0.0498 (8) 0.0709 (9) 0.0699 (13)

0.0453 (7) 0.0413 (7) 0.0607 (3) 0.0472 (7) 0.0500 (8) 0.0770 (8) 0.0551 (9) 0.0447 (8) 0.0633 (10) 0.0509 (7) 0.0444 (8) 0.0706 (9) 0.0474 (7) 0.0441 (8) 0.0658 (9) 0.0511 (9) 0.0505 (9) 0.0575 (8) 0.0812 (14)

0.0317 (6) 0.0326 (7) 0.0382 (2) 0.0324 (6) 0.0366 (8) 0.0344 (6) 0.0402 (8) 0.0391 (8) 0.0431 (9) 0.0312 (6) 0.0332 (7) 0.0343 (7) 0.0324 (6) 0.0348 (7) 0.0367 (7) 0.0370 (8) 0.0338 (7) 0.0378 (7) 0.0585 (12)

−0.0052 (5) −0.0015 (6) −0.01528 (17) −0.0082 (5) −0.0103 (6) −0.0257 (6) −0.0120 (7) −0.0045 (6) −0.0106 (8) −0.0070 (6) −0.0026 (6) −0.0214 (7) −0.0033 (5) −0.0005 (6) −0.0097 (6) −0.0081 (6) −0.0058 (7) 0.0031 (7) 0.0098 (10)

0.0033 (5) 0.0050 (6) 0.00502 (16) 0.0037 (5) 0.0077 (6) 0.0072 (5) 0.0061 (6) 0.0032 (6) −0.0012 (7) 0.0045 (5) 0.0058 (6) 0.0010 (6) 0.0035 (5) 0.0042 (6) −0.0005 (6) 0.0056 (6) 0.0065 (6) 0.0045 (6) −0.0149 (10)

0.0009 (5) −0.0007 (6) 0.00312 (16) 0.0005 (5) −0.0017 (6) 0.0039 (5) −0.0029 (7) −0.0039 (6) −0.0018 (7) 0.0020 (5) 0.0005 (6) 0.0074 (6) 0.0010 (5) 0.0004 (6) 0.0062 (6) 0.0032 (6) 0.0044 (6) 0.0025 (6) −0.0131 (10)

Acta Cryst. (2015). C71, 229-238

sup-3

supporting information C2X O21X C3X C4X C5X N1Y C11Y C2Y O21Y C3Y C4Y C5Y

0.0597 (10) 0.0746 (9) 0.0630 (11) 0.0746 (13) 0.1026 (16) 0.0876 (11) 0.0978 (17) 0.0734 (12) 0.0838 (10) 0.0838 (16) 0.0903 (17) 0.1074 (17)

0.0492 (9) 0.0735 (9) 0.0525 (10) 0.0655 (12) 0.0615 (11) 0.0638 (9) 0.0765 (14) 0.0738 (12) 0.1152 (12) 0.1028 (19) 0.0787 (15) 0.0653 (12)

0.0394 (8) 0.0404 (7) 0.0665 (12) 0.0964 (17) 0.0524 (11) 0.0387 (8) 0.0734 (14) 0.0404 (9) 0.0363 (7) 0.0854 (17) 0.0865 (17) 0.0416 (10)

0.0011 (7) −0.0183 (7) −0.0059 (8) −0.0024 (10) 0.0082 (11) −0.0133 (8) 0.0014 (13) −0.0335 (10) −0.0523 (9) −0.0163 (14) −0.0133 (13) −0.0170 (12)

0.0026 (7) 0.0006 (6) −0.0012 (9) 0.0339 (12) 0.0300 (11) 0.0066 (7) 0.0193 (12) 0.0060 (8) 0.0042 (6) 0.0084 (13) −0.0024 (14) −0.0061 (10)

0.0034 (7) 0.0106 (6) 0.0012 (8) 0.0077 (11) 0.0102 (9) 0.0045 (7) 0.0106 (12) −0.0041 (8) 0.0009 (7) −0.0299 (14) 0.0153 (12) 0.0046 (8)

Geometric parameters (Å, º) N1A—C2A N1A—C6A N1A—H1A C2A—N3A C2A—S21A N3A—C4A N3A—H3A C4A—O41A C4A—C5A C5A—C6A C5A—H5A C6A—C61A C61A—H61A C61A—H61B C61A—H61C N1B—C6B N1B—C2B C2B—N21B C2B—N3B N21B—H21B N21B—H22B N3B—C4B C4B—N41B C4B—C5B N41B—H41B N41B—H42B C5B—C6B C5B—H5B C6B—H6B N1X—C2X N1X—C11X

1.3582 (18) 1.3736 (19) 0.877 (14) 1.3595 (19) 1.6686 (15) 1.3920 (19) 0.906 (14) 1.2361 (18) 1.424 (2) 1.350 (2) 0.9500 1.492 (2) 0.9800 0.9800 0.9800 1.349 (2) 1.3506 (19) 1.342 (2) 1.3453 (19) 0.880 (15) 0.869 (15) 1.3406 (19) 1.339 (2) 1.413 (2) 0.882 (15) 0.874 (15) 1.362 (2) 0.9500 0.9500 1.320 (2) 1.443 (3)

N1X—C5X C11X—H11A C11X—H11B C11X—H11C C2X—O21X C2X—C3X C3X—C4X C3X—H3X1 C3X—H3X2 C4X—C5X C4X—H4X1 C4X—H4X2 C5X—H5X1 C5X—H5X2 N1Y—C2Y N1Y—C11Y N1Y—C5Y C11Y—H11D C11Y—H11E C11Y—H11F C2Y—O21Y C2Y—C3Y C3Y—C4Y C3Y—H3Y1 C3Y—H3Y2 C4Y—C5Y C4Y—H4Y1 C4Y—H4Y2 C5Y—H5Y1 C5Y—H5Y2

1.447 (3) 0.9800 0.9800 0.9800 1.233 (2) 1.508 (3) 1.517 (3) 0.9900 0.9900 1.543 (3) 0.9900 0.9900 0.9900 0.9900 1.330 (2) 1.436 (3) 1.445 (3) 0.9800 0.9800 0.9800 1.230 (2) 1.503 (4) 1.509 (4) 0.9900 0.9900 1.514 (4) 0.9900 0.9900 0.9900 0.9900

C2A—N1A—C6A

123.60 (13)

H11B—C11X—H11C

109.5

Acta Cryst. (2015). C71, 229-238

sup-4

supporting information C2A—N1A—H1A C6A—N1A—H1A N1A—C2A—N3A N1A—C2A—S21A N3A—C2A—S21A C2A—N3A—C4A C2A—N3A—H3A C4A—N3A—H3A O41A—C4A—N3A O41A—C4A—C5A N3A—C4A—C5A C6A—C5A—C4A C6A—C5A—H5A C4A—C5A—H5A C5A—C6A—N1A C5A—C6A—C61A N1A—C6A—C61A C6A—C61A—H61A C6A—C61A—H61B H61A—C61A—H61B C6A—C61A—H61C H61A—C61A—H61C H61B—C61A—H61C C6B—N1B—C2B N21B—C2B—N3B N21B—C2B—N1B N3B—C2B—N1B C2B—N21B—H21B C2B—N21B—H22B H21B—N21B—H22B C4B—N3B—C2B N41B—C4B—N3B N41B—C4B—C5B N3B—C4B—C5B C4B—N41B—H41B C4B—N41B—H42B H41B—N41B—H42B C6B—C5B—C4B C6B—C5B—H5B C4B—C5B—H5B N1B—C6B—C5B N1B—C6B—H6B C5B—C6B—H6B C2X—N1X—C11X C2X—N1X—C5X C11X—N1X—C5X N1X—C11X—H11A N1X—C11X—H11B

Acta Cryst. (2015). C71, 229-238

116.5 (12) 119.9 (12) 115.84 (13) 121.79 (11) 122.36 (11) 125.01 (13) 119.1 (11) 115.8 (11) 119.53 (14) 125.04 (14) 115.42 (13) 120.69 (14) 119.7 119.7 119.41 (13) 123.59 (14) 116.98 (13) 109.5 109.5 109.5 109.5 109.5 109.5 114.55 (13) 116.12 (13) 117.75 (13) 126.12 (13) 119.0 (14) 118.3 (14) 122.1 (19) 117.48 (12) 116.92 (13) 122.31 (14) 120.77 (13) 119.3 (13) 121.2 (14) 119.3 (19) 116.52 (14) 121.7 121.7 124.53 (14) 117.7 117.7 123.59 (17) 115.02 (16) 120.70 (17) 109.5 109.5

O21X—C2X—N1X O21X—C2X—C3X N1X—C2X—C3X C2X—C3X—C4X C2X—C3X—H3X1 C4X—C3X—H3X1 C2X—C3X—H3X2 C4X—C3X—H3X2 H3X1—C3X—H3X2 C3X—C4X—C5X C3X—C4X—H4X1 C5X—C4X—H4X1 C3X—C4X—H4X2 C5X—C4X—H4X2 H4X1—C4X—H4X2 N1X—C5X—C4X N1X—C5X—H5X1 C4X—C5X—H5X1 N1X—C5X—H5X2 C4X—C5X—H5X2 H5X1—C5X—H5X2 C2Y—N1Y—C11Y C2Y—N1Y—C5Y C11Y—N1Y—C5Y N1Y—C11Y—H11D N1Y—C11Y—H11E H11D—C11Y—H11E N1Y—C11Y—H11F H11D—C11Y—H11F H11E—C11Y—H11F O21Y—C2Y—N1Y O21Y—C2Y—C3Y N1Y—C2Y—C3Y C2Y—C3Y—C4Y C2Y—C3Y—H3Y1 C4Y—C3Y—H3Y1 C2Y—C3Y—H3Y2 C4Y—C3Y—H3Y2 H3Y1—C3Y—H3Y2 C3Y—C4Y—C5Y C3Y—C4Y—H4Y1 C5Y—C4Y—H4Y1 C3Y—C4Y—H4Y2 C5Y—C4Y—H4Y2 H4Y1—C4Y—H4Y2 N1Y—C5Y—C4Y N1Y—C5Y—H5Y1 C4Y—C5Y—H5Y1

125.32 (17) 125.58 (16) 109.10 (16) 104.95 (16) 110.8 110.8 110.8 110.8 108.8 105.08 (16) 110.7 110.7 110.7 110.7 108.8 103.45 (16) 111.1 111.1 111.1 111.1 109.0 123.57 (18) 115.09 (19) 121.28 (18) 109.5 109.5 109.5 109.5 109.5 109.5 126.0 (2) 125.8 (2) 108.14 (19) 106.1 (2) 110.5 110.5 110.5 110.5 108.7 106.0 (2) 110.5 110.5 110.5 110.5 108.7 104.64 (18) 110.8 110.8

sup-5

supporting information H11A—C11X—H11B N1X—C11X—H11C H11A—C11X—H11C

109.5 109.5 109.5

N1Y—C5Y—H5Y2 C4Y—C5Y—H5Y2 H5Y1—C5Y—H5Y2

110.8 110.8 108.9

C6A—N1A—C2A—N3A C6A—N1A—C2A—S21A N1A—C2A—N3A—C4A S21A—C2A—N3A—C4A C2A—N3A—C4A—O41A C2A—N3A—C4A—C5A O41A—C4A—C5A—C6A N3A—C4A—C5A—C6A C4A—C5A—C6A—N1A C4A—C5A—C6A—C61A C2A—N1A—C6A—C5A C2A—N1A—C6A—C61A C6B—N1B—C2B—N21B C6B—N1B—C2B—N3B N21B—C2B—N3B—C4B N1B—C2B—N3B—C4B C2B—N3B—C4B—N41B C2B—N3B—C4B—C5B N41B—C4B—C5B—C6B N3B—C4B—C5B—C6B C2B—N1B—C6B—C5B

1.1 (2) −177.92 (12) −0.3 (2) 178.71 (12) 178.83 (15) −1.1 (2) −178.08 (17) 1.9 (2) −1.2 (2) 177.14 (15) −0.4 (2) −178.81 (14) −177.82 (15) 1.5 (2) 177.17 (14) −2.1 (2) −179.33 (14) 1.2 (2) −179.26 (16) 0.2 (2) 0.1 (2)

C4B—C5B—C6B—N1B C11X—N1X—C2X—O21X C5X—N1X—C2X—O21X C11X—N1X—C2X—C3X C5X—N1X—C2X—C3X O21X—C2X—C3X—C4X N1X—C2X—C3X—C4X C2X—C3X—C4X—C5X C2X—N1X—C5X—C4X C11X—N1X—C5X—C4X C3X—C4X—C5X—N1X C11Y—N1Y—C2Y—O21Y C5Y—N1Y—C2Y—O21Y C11Y—N1Y—C2Y—C3Y C5Y—N1Y—C2Y—C3Y O21Y—C2Y—C3Y—C4Y N1Y—C2Y—C3Y—C4Y C2Y—C3Y—C4Y—C5Y C2Y—N1Y—C5Y—C4Y C11Y—N1Y—C5Y—C4Y C3Y—C4Y—C5Y—N1Y

−0.9 (2) 6.2 (3) 176.65 (18) −173.63 (17) −3.2 (2) 173.00 (19) −7.2 (2) 13.7 (2) 11.9 (2) −177.36 (17) −15.2 (2) −1.9 (3) −178.88 (18) 177.9 (2) 1.0 (2) −179.16 (19) 1.0 (3) −2.4 (3) −2.5 (2) −179.54 (19) 2.9 (2)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1A—H1A···O21X N3A—H3A···N1B N21B—H21B···O41A N21B—H22B···O21Y N41B—H41B···N3Bi N41B—H42B···O21Yii

0.88 (1) 0.91 (1) 0.88 (2) 0.87 (2) 0.88 (2) 0.87 (2)

1.90 (2) 1.96 (1) 2.01 (2) 2.07 (2) 2.17 (2) 2.02 (2)

2.7413 (17) 2.8674 (18) 2.8914 (18) 2.9351 (19) 3.0334 (19) 2.8565 (19)

162 (2) 175 (2) 175 (2) 173 (2) 166 (2) 159 (2)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x+1/2, y+1/2, z.

(II) 6-Methyl-2-thiouracil–2,4-diaminopyrimidine (1/1) Crystal data C5H6N2OS·C4H6N4 Mr = 252.31 Orthorhombic, Pnma a = 6.9996 (8) Å b = 19.223 (2) Å c = 17.143 (2) Å V = 2306.6 (4) Å3 Z=8 F(000) = 1056

Acta Cryst. (2015). C71, 229-238

Dx = 1.453 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 4338 reflections θ = 3.3–25.9° µ = 0.28 mm−1 T = 173 K Plate, colourless 0.14 × 0.10 × 0.09 mm

sup-6

supporting information Data collection Stoe IPDS II two-circle diffractometer Radiation source: Genix 3D IµS microfocus Xray source ω scans Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001) Tmin = 0.965, Tmax = 0.977

11786 measured reflections 2234 independent reflections 1279 reflections with I > 2σ(I) Rint = 0.103 θmax = 25.7°, θmin = 3.3° h = −8→7 k = −23→23 l = −17→20

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.052 wR(F2) = 0.111 S = 0.93 2234 reflections 197 parameters 8 restraints

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0416P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.26 e Å−3 Δρmin = −0.23 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N1A H1A C2A S21A N3A H3A C4A O41A C5A H5A C6A C61A H61A H61B H61C C2B N21B H21B N3B C4B H4B N41B

x

y

z

Uiso*/Ueq

Occ. ( 2σ(I) Rint = 0.030 θmax = 25.6°, θmin = 3.3° h = −9→9 k = −15→15 l = −14→17

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.039 wR(F2) = 0.105

Acta Cryst. (2015). C71, 229-238

S = 1.05 5400 reflections 417 parameters 264 restraints

sup-10

supporting information Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3449P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.34 e Å−3 Δρmin = −0.26 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N1A H1A C2A S21A N3A H3A C4A O41A C5A H5A C6A C61A H61A H61B H61C N1B H1B C2B S21B N3B H3B C4B O41B C5B H5B C6B C61B H61D H61E H61F N1C C2C N21C H21C

x

y

z

Uiso*/Ueq

0.45478 (17) 0.410 (2) 0.3567 (2) 0.15266 (5) 0.43471 (17) 0.377 (2) 0.6030 (2) 0.66039 (15) 0.6972 (2) 0.8131 0.6232 (2) 0.7149 (2) 0.8249 0.6485 0.7317 0.53903 (17) 0.501 (2) 0.4328 (2) 0.22937 (5) 0.50420 (17) 0.439 (2) 0.6731 (2) 0.72348 (16) 0.7756 (2) 0.8928 0.7077 (2) 0.8046 (2) 0.9255 0.7833 0.7686 0.29400 (18) 0.3541 (2) 0.51981 (19) 0.586 (3)

0.96529 (11) 1.0264 (13) 0.88686 (12) 0.90090 (3) 0.79672 (11) 0.7436 (13) 0.78048 (13) 0.69456 (9) 0.86709 (13) 0.8615 0.95624 (13) 1.04783 (14) 1.0398 1.1127 1.0512 0.04939 (11) −0.0102 (13) 0.12959 (13) 0.11895 (3) 0.21859 (11) 0.2708 (13) 0.23176 (14) 0.31615 (10) 0.14273 (14) 0.1458 0.05468 (13) −0.04043 (15) −0.0331 −0.1030 −0.0476 0.40736 (12) 0.50040 (13) 0.50244 (13) 0.4483 (15)

0.63713 (10) 0.6207 (14) 0.66301 (11) 0.66124 (3) 0.69065 (10) 0.7066 (14) 0.69412 (12) 0.71935 (10) 0.66526 (12) 0.6664 0.63654 (12) 0.60124 (14) 0.6176 0.6315 0.5314 0.86396 (10) 0.8852 (14) 0.84211 (12) 0.85068 (4) 0.81230 (11) 0.8008 (14) 0.80270 (14) 0.77527 (12) 0.82645 (13) 0.8204 0.85730 (12) 0.88667 (14) 0.8686 0.8543 0.9564 0.77383 (11) 0.75200 (13) 0.74292 (15) 0.7502 (17)

0.0274 (3) 0.033* 0.0262 (3) 0.03432 (13) 0.0279 (3) 0.034* 0.0296 (4) 0.0400 (3) 0.0309 (4) 0.037* 0.0287 (3) 0.0366 (4) 0.055* 0.055* 0.055* 0.0296 (3) 0.036* 0.0282 (3) 0.03592 (13) 0.0301 (3) 0.036* 0.0350 (4) 0.0485 (4) 0.0349 (4) 0.042* 0.0310 (4) 0.0395 (4) 0.059* 0.059* 0.059* 0.0361 (3) 0.0324 (4) 0.0453 (4) 0.054*

Acta Cryst. (2015). C71, 229-238

Occ. ( 2σ(I) Rint = 0.047 θmax = 25.9°, θmin = 3.5° h = −18→18 k = −10→10 l = −24→27

sup-18

supporting information Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.095 S = 1.05 2624 reflections 188 parameters 5 restraints

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0476P)2 + 0.6173P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.19 e Å−3 Δρmin = −0.18 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N1A H1A C2A S21A N3A H3A C4A O41A C5A H5A C6A C61A H61A H61B H61C H61D H61E H61F C2B N21B H21B N3B C4B H4B N41B H41B H42B C5B H5B C1X

x

y

z

Uiso*/Ueq

Occ. ( 2σ(I) Rint = 0.032 θmax = 25.9°, θmin = 2.5° h = −10→9 k = −8→8 l = −30→30

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.037 wR(F2) = 0.102 S = 1.15 2836 reflections 244 parameters 10 restraints

Acta Cryst. (2015). C71, 229-238

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0434P)2 + 0.6067P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.23 e Å−3 Δρmin = −0.25 e Å−3

sup-22

supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N1A H1A C2A S21A N3A H3A C4A O41A C5A H5A C6A C61A H61A H62A H63A H64A H65A H66A N1B H1B C2B S21B N3B C4B O41B C5B H5B C6B C61B H61B H62B H63B N1C C2C N21C H21C H22C N3C H3C

x

y

z

Uiso*/Ueq

0.2568 (2) 0.277 (3) 0.3805 (3) 0.57544 (7) 0.3343 (2) 0.416 (3) 0.1757 (3) 0.14919 (19) 0.0527 (3) −0.0598 0.0955 (3) −0.0246 (3) −0.1363 −0.0080 −0.0080 0.0347 −0.0935 −0.0935 0.4998 (2) 0.558 (3) 0.5791 (3) 0.78692 (7) 0.4938 (2) 0.3265 (3) 0.24638 (19) 0.2457 (3) 0.1295 0.3340 (3) 0.2622 (3) 0.1425 0.2985 0.2985 0.5835 (2) 0.5317 (3) 0.3722 (2) 0.306 (3) 0.330 (3) 0.6346 (2) 0.591 (3)

0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.1288 0.3712 0.2500 0.3712 0.1288 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.3712 0.1288 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

−0.07376 (8) −0.1073 (8) −0.03157 (9) −0.04155 (2) 0.01840 (8) 0.0454 (9) 0.02881 (9) 0.07611 (6) −0.01817 (9) −0.0142 −0.06796 (9) −0.11931 (10) −0.1107 −0.1404 −0.1404 −0.1503 −0.1206 −0.1206 0.42379 (7) 0.4559 (8) 0.37962 (9) 0.39207 (2) 0.32940 (7) 0.32283 (9) 0.27568 (6) 0.36933 (9) 0.3650 0.41956 (9) 0.47071 (9) 0.4621 0.4918 0.4918 0.12805 (7) 0.17556 (9) 0.17763 (8) 0.1463 (9) 0.2071 (9) 0.22384 (8) 0.2541 (8)

0.0303 (4) 0.036* 0.0277 (5) 0.03333 (17) 0.0285 (4) 0.034* 0.0305 (5) 0.0387 (4) 0.0336 (5) 0.040* 0.0313 (5) 0.0403 (6) 0.060* 0.060* 0.060* 0.060* 0.060* 0.060* 0.0303 (4) 0.036* 0.0302 (5) 0.0458 (2) 0.0302 (4) 0.0304 (5) 0.0378 (4) 0.0335 (5) 0.040* 0.0300 (5) 0.0377 (6) 0.056* 0.056* 0.056* 0.0278 (4) 0.0276 (5) 0.0369 (5) 0.044* 0.044* 0.0292 (4) 0.035*

Acta Cryst. (2015). C71, 229-238

Occ. ( 2σ(I) Rint = 0.088 θmax = 26.0°, θmin = 2.9° h = −9→9 k = −30→36 l = −9→9

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.047 wR(F2) = 0.137 S = 1.05 3119 reflections 233 parameters 7 restraints Hydrogen site location: mixed

Acta Cryst. (2015). C71, 229-238

H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0752P)2 + 0.1661P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.014 Δρmax = 0.17 e Å−3 Δρmin = −0.34 e Å−3 Extinction correction: SHELXL3013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.052 (7)

sup-28

supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N1A H1A C2A S21A N3A H3A C4A O41A C5A H5A C6A C61A H61A H62A H63A N1B C2B N21B H21B H22B N3B H3B C4B O41B C5B H5B C6B N61B H61B H62B C1X H1X O11X N2X C3X H3X1 H3X2 H3X3 C4X

x

y

z

Uiso*/Ueq

0.2107 (2) 0.251 (3) 0.3094 (3) 0.49426 (7) 0.2427 (2) 0.299 (3) 0.0902 (3) 0.0453 (2) −0.0046 (3) −0.1105 0.0551 (3) −0.0394 (3) −0.1280 0.0662 −0.1184 0.4222 (2) 0.3594 (3) 0.1890 (3) 0.134 (3) 0.156 (4) 0.4586 (2) 0.414 (3) 0.6353 (3) 0.7139 (2) 0.7038 (3) 0.8246 0.5933 (3) 0.6496 (3) 0.762 (3) 0.584 (3) 0.4567 (3) 0.5494 0.2964 (2) 0.5098 (3) 0.3752 (4) 0.2581 0.4469 0.3303 0.7010 (4)

0.54021 (5) 0.5675 (6) 0.50515 (6) 0.51197 (2) 0.46423 (5) 0.4400 (6) 0.45657 (7) 0.41783 (5) 0.49538 (7) 0.4925 0.53614 (7) 0.57872 (7) 0.5728 0.5997 0.5915 0.37462 (5) 0.33685 (6) 0.33560 (6) 0.3602 (7) 0.3102 (6) 0.29747 (5) 0.2741 (6) 0.29360 (6) 0.25554 (4) 0.33296 (6) 0.3332 0.37189 (6) 0.40973 (6) 0.4107 (9) 0.4339 (7) 0.63490 (7) 0.6114 0.62540 (5) 0.67515 (6) 0.71295 (8) 0.7037 0.7368 0.7238 0.68336 (8)

0.4616 (2) 0.509 (3) 0.5672 (3) 0.77513 (6) 0.4922 (2) 0.554 (3) 0.3188 (2) 0.26477 (19) 0.2173 (3) 0.0981 0.2898 (3) 0.1971 (3) 0.0685 0.2055 0.2565 0.6930 (2) 0.6026 (2) 0.4491 (2) 0.398 (3) 0.390 (3) 0.6611 (2) 0.599 (3) 0.8200 (3) 0.86180 (19) 0.9179 (3) 1.0278 0.8530 (3) 0.9491 (2) 1.050 (3) 0.902 (3) 0.7106 (3) 0.7657 0.5798 (2) 0.7803 (2) 0.7054 (3) 0.5947 0.6755 0.7955 0.9354 (3)

0.0554 (4) 0.066* 0.0530 (4) 0.0581 (2) 0.0541 (4) 0.065* 0.0557 (4) 0.0653 (4) 0.0575 (5) 0.069* 0.0551 (4) 0.0631 (5) 0.095* 0.095* 0.095* 0.0550 (4) 0.0549 (4) 0.0655 (5) 0.079* 0.079* 0.0565 (4) 0.068* 0.0561 (4) 0.0660 (4) 0.0580 (5) 0.070* 0.0556 (4) 0.0651 (4) 0.078* 0.078* 0.0667 (5) 0.080* 0.0749 (4) 0.0653 (4) 0.0759 (6) 0.114* 0.114* 0.114* 0.0778 (6)

Acta Cryst. (2015). C71, 229-238

sup-29

supporting information H4X1 H4X2 H4X3

0.7822 0.6772 0.7730

0.6561 0.6924 0.7071

0.9654 1.0403 0.9052

0.117* 0.117* 0.117*

Atomic displacement parameters (Å2)

N1A C2A S21A N3A C4A O41A C5A C6A C61A N1B C2B N21B N3B C4B O41B C5B C6B N61B C1X O11X N2X C3X C4X

U11

U22

U33

U12

U13

U23

0.0544 (8) 0.0502 (9) 0.0547 (3) 0.0509 (8) 0.0489 (9) 0.0647 (7) 0.0509 (10) 0.0490 (9) 0.0592 (10) 0.0512 (8) 0.0522 (9) 0.0608 (9) 0.0575 (8) 0.0546 (9) 0.0675 (8) 0.0529 (9) 0.0515 (9) 0.0631 (10) 0.0697 (11) 0.0744 (9) 0.0682 (10) 0.0808 (14) 0.0769 (14)

0.0506 (9) 0.0524 (10) 0.0545 (3) 0.0521 (8) 0.0570 (11) 0.0531 (8) 0.0599 (11) 0.0585 (11) 0.0586 (12) 0.0499 (9) 0.0509 (10) 0.0510 (9) 0.0459 (8) 0.0515 (10) 0.0501 (8) 0.0536 (10) 0.0540 (10) 0.0499 (9) 0.0565 (12) 0.0587 (9) 0.0522 (9) 0.0574 (12) 0.0702 (14)

0.0552 (8) 0.0546 (10) 0.0537 (3) 0.0504 (8) 0.0537 (10) 0.0586 (8) 0.0530 (10) 0.0539 (9) 0.0629 (11) 0.0537 (8) 0.0548 (10) 0.0605 (10) 0.0550 (9) 0.0543 (10) 0.0642 (8) 0.0554 (10) 0.0548 (10) 0.0606 (9) 0.0688 (12) 0.0747 (9) 0.0685 (10) 0.0858 (15) 0.0735 (14)

−0.0006 (7) 0.0015 (7) −0.00083 (19) 0.0008 (6) −0.0004 (8) −0.0028 (6) 0.0011 (8) 0.0023 (8) 0.0046 (9) 0.0005 (6) 0.0015 (8) 0.0026 (7) 0.0003 (7) 0.0033 (8) 0.0063 (6) 0.0010 (8) 0.0000 (7) 0.0024 (7) −0.0006 (9) −0.0031 (7) −0.0018 (7) 0.0056 (10) −0.0124 (11)

0.0179 (7) 0.0209 (8) 0.0127 (2) 0.0134 (6) 0.0149 (8) 0.0081 (6) 0.0140 (8) 0.0184 (7) 0.0182 (9) 0.0131 (6) 0.0168 (8) 0.0032 (8) 0.0136 (7) 0.0162 (8) 0.0130 (7) 0.0118 (8) 0.0166 (8) 0.0063 (7) 0.0250 (10) 0.0162 (8) 0.0230 (9) 0.0326 (12) 0.0202 (11)

−0.0015 (7) 0.0007 (8) −0.00218 (19) −0.0001 (7) −0.0012 (8) −0.0025 (6) 0.0021 (8) 0.0031 (8) 0.0078 (9) −0.0025 (7) 0.0003 (8) −0.0046 (7) −0.0015 (7) 0.0040 (8) 0.0036 (6) 0.0002 (8) −0.0012 (8) −0.0048 (8) 0.0011 (9) −0.0049 (7) 0.0008 (7) 0.0029 (11) −0.0011 (11)

Geometric parameters (Å, º) N1A—C2A N1A—C6A N1A—H1A C2A—N3A C2A—S21A N3A—C4A N3A—H3A C4A—O41A C4A—C5A C5A—C6A C5A—H5A C6A—C61A C61A—H61A C61A—H62A C61A—H63A

Acta Cryst. (2015). C71, 229-238

1.356 (2) 1.377 (2) 0.901 (16) 1.367 (2) 1.6631 (19) 1.391 (2) 0.882 (16) 1.238 (2) 1.425 (3) 1.349 (3) 0.9500 1.496 (3) 0.9800 0.9800 0.9800

N3B—C4B N3B—H3B C4B—O41B C4B—C5B C5B—C6B C5B—H5B C6B—N61B N61B—H61B N61B—H62B C1X—O11X C1X—N2X C1X—H1X N2X—C4X N2X—C3X C3X—H3X1

1.387 (2) 0.846 (16) 1.261 (2) 1.394 (3) 1.393 (3) 0.9500 1.341 (2) 0.879 (16) 0.865 (16) 1.233 (3) 1.322 (3) 0.9500 1.449 (3) 1.457 (3) 0.9800

sup-30

supporting information N1B—C2B N1B—C6B C2B—N21B C2B—N3B N21B—H21B N21B—H22B

1.323 (2) 1.368 (2) 1.334 (2) 1.364 (2) 0.861 (16) 0.880 (16)

C3X—H3X2 C3X—H3X3 C4X—H4X1 C4X—H4X2 C4X—H4X3

0.9800 0.9800 0.9800 0.9800 0.9800

C2A—N1A—C6A C2A—N1A—H1A C6A—N1A—H1A N1A—C2A—N3A N1A—C2A—S21A N3A—C2A—S21A C2A—N3A—C4A C2A—N3A—H3A C4A—N3A—H3A O41A—C4A—N3A O41A—C4A—C5A N3A—C4A—C5A C6A—C5A—C4A C6A—C5A—H5A C4A—C5A—H5A C5A—C6A—N1A C5A—C6A—C61A N1A—C6A—C61A C6A—C61A—H61A C6A—C61A—H62A H61A—C61A—H62A C6A—C61A—H63A H61A—C61A—H63A H62A—C61A—H63A C2B—N1B—C6B N1B—C2B—N21B N1B—C2B—N3B N21B—C2B—N3B C2B—N21B—H21B C2B—N21B—H22B H21B—N21B—H22B C2B—N3B—C4B

123.85 (17) 116.7 (15) 119.5 (15) 115.23 (16) 121.85 (15) 122.91 (14) 125.35 (16) 119.9 (15) 114.8 (15) 119.34 (17) 125.17 (17) 115.49 (17) 120.35 (17) 119.8 119.8 119.69 (18) 124.37 (18) 115.93 (18) 109.5 109.5 109.5 109.5 109.5 109.5 115.73 (15) 120.36 (17) 123.04 (16) 116.57 (17) 119.2 (17) 117.7 (17) 121 (2) 122.90 (16)

C2B—N3B—H3B C4B—N3B—H3B O41B—C4B—N3B O41B—C4B—C5B N3B—C4B—C5B C4B—C5B—C6B C4B—C5B—H5B C6B—C5B—H5B N61B—C6B—N1B N61B—C6B—C5B N1B—C6B—C5B C6B—N61B—H61B C6B—N61B—H62B H61B—N61B—H62B O11X—C1X—N2X O11X—C1X—H1X N2X—C1X—H1X C1X—N2X—C4X C1X—N2X—C3X C4X—N2X—C3X N2X—C3X—H3X1 N2X—C3X—H3X2 H3X1—C3X—H3X2 N2X—C3X—H3X3 H3X1—C3X—H3X3 H3X2—C3X—H3X3 N2X—C4X—H4X1 N2X—C4X—H4X2 H4X1—C4X—H4X2 N2X—C4X—H4X3 H4X1—C4X—H4X3 H4X2—C4X—H4X3

120.1 (16) 117.0 (16) 117.63 (17) 127.30 (17) 115.05 (17) 119.27 (17) 120.4 120.4 115.43 (17) 120.61 (17) 123.95 (17) 120.0 (17) 119.0 (17) 120 (2) 125.3 (2) 117.4 117.4 121.71 (19) 120.87 (19) 117.41 (18) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5

C6A—N1A—C2A—N3A C6A—N1A—C2A—S21A N1A—C2A—N3A—C4A S21A—C2A—N3A—C4A C2A—N3A—C4A—O41A C2A—N3A—C4A—C5A O41A—C4A—C5A—C6A N3A—C4A—C5A—C6A

−0.6 (3) −179.11 (13) 2.1 (3) −179.43 (14) 178.78 (17) −2.0 (3) 179.51 (18) 0.3 (3)

C6B—N1B—C2B—N3B N1B—C2B—N3B—C4B N21B—C2B—N3B—C4B C2B—N3B—C4B—O41B C2B—N3B—C4B—C5B O41B—C4B—C5B—C6B N3B—C4B—C5B—C6B C2B—N1B—C6B—N61B

−1.0 (3) −0.6 (3) −178.78 (18) 179.61 (17) 0.8 (3) −178.02 (19) 0.6 (3) −176.36 (17)

Acta Cryst. (2015). C71, 229-238

sup-31

supporting information C4A—C5A—C6A—N1A C4A—C5A—C6A—C61A C2A—N1A—C6A—C5A C2A—N1A—C6A—C61A C6B—N1B—C2B—N21B

1.0 (3) −177.78 (17) −0.9 (3) 178.01 (16) 177.02 (17)

C2B—N1B—C6B—C5B C4B—C5B—C6B—N61B C4B—C5B—C6B—N1B O11X—C1X—N2X—C4X O11X—C1X—N2X—C3X

2.6 (3) 176.47 (19) −2.4 (3) 179.6 (2) 0.8 (3)

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1A—H1A···O11X N3A—H3A···N1B N21B—H21B···O41A N21B—H22B···O41Bi N3B—H3B···O41Bi N61B—H61B···O41Aii N61B—H62B···S21A

0.90 (2) 0.88 (2) 0.86 (2) 0.88 (2) 0.85 (2) 0.88 (2) 0.87 (2)

1.82 (2) 2.25 (2) 2.00 (2) 2.06 (2) 2.06 (2) 2.07 (2) 2.53 (2)

2.713 (2) 3.132 (2) 2.848 (2) 2.856 (2) 2.815 (2) 2.945 (2) 3.3708 (18)

172 (2) 175 (2) 170 (2) 151 (2) 149 (2) 172 (2) 163 (2)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1, y, z+1.

(VII) 6-Methyl-2-thiouracil–6-amino-3H-isocytosine–dimethyl sulfoxide (1/1/1) Crystal data C5H6N2OS·C4H6N4O·C2H6OS Mr = 346.43 Monoclinic, P21/c a = 8.2520 (7) Å b = 23.9532 (19) Å c = 8.2133 (6) Å β = 102.496 (6)° V = 1585.0 (2) Å3 Z=4

F(000) = 728 Dx = 1.452 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 20193 reflections θ = 1.7–26.9° µ = 0.36 mm−1 T = 173 K Plate, colourless 0.22 × 0.21 × 0.07 mm

Data collection Stoe IPDS II two-circle diffractometer Radiation source: Genix 3D IµS microfocus Xray source ω scans Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001) Tmin = 0.925, Tmax = 0.978

13609 measured reflections 3229 independent reflections 2706 reflections with I > 2σ(I) Rint = 0.064 θmax = 26.4°, θmin = 1.7° h = −10→10 k = −29→29 l = −10→9

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.047 wR(F2) = 0.113 S = 1.06 3229 reflections 223 parameters 7 restraints

Acta Cryst. (2015). C71, 229-238

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement w = 1/[σ2(Fo2) + (0.0541P)2 + 0.7321P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.35 e Å−3 Δρmin = −0.32 e Å−3

sup-32

supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

N1A H1A C2A S21A N3A H3A C4A O41A C5A H5A C6A C61A H61A H62A H63A N1B C2B N21B H21B H22B N3B H3B C4B O41B C5B H5B C6B N61B H61B H62B C1X H1X1 H1X2 H1X3 S2X O21X C3X H3X1 H3X2

x

y

z

Uiso*/Ueq

0.1018 (2) 0.040 (3) 0.1819 (3) 0.17565 (8) 0.2681 (2) 0.322 (3) 0.2767 (3) 0.3617 (2) 0.1840 (3) 0.1814 0.1002 (3) 0.0057 (3) −0.0019 −0.1061 0.0630 0.4607 (2) 0.5110 (2) 0.5132 (3) 0.473 (3) 0.540 (3) 0.5615 (2) 0.589 (3) 0.5641 (3) 0.6090 (2) 0.5162 (3) 0.5182 0.4651 (3) 0.4173 (3) 0.411 (4) 0.377 (3) −0.1873 (3) −0.3008 −0.1902 −0.1230 −0.09248 (7) −0.0699 (2) 0.1057 (3) 0.1548 0.0937

0.42641 (8) 0.4003 (9) 0.46132 (9) 0.45203 (3) 0.50357 (8) 0.5273 (10) 0.51298 (10) 0.55224 (7) 0.47532 (10) 0.4803 0.43267 (10) 0.38987 (11) 0.4012 0.3864 0.3539 0.59726 (7) 0.64257 (9) 0.64312 (8) 0.6137 (9) 0.6742 (9) 0.68989 (7) 0.7197 (9) 0.69499 (9) 0.74137 (6) 0.64760 (9) 0.6474 0.60021 (9) 0.55420 (9) 0.5555 (12) 0.5254 (9) 0.25089 (11) 0.2544 0.2348 0.2265 0.31824 (3) 0.33405 (8) 0.29648 (12) 0.2706 0.2777

0.3836 (2) 0.416 (3) 0.5040 (3) 0.70382 (7) 0.4504 (2) 0.524 (3) 0.2863 (3) 0.2531 (2) 0.1667 (3) 0.0514 0.2175 (3) 0.1041 (3) −0.0120 0.1255 0.1241 0.6794 (2) 0.6119 (3) 0.4500 (2) 0.392 (3) 0.412 (3) 0.6991 (2) 0.643 (3) 0.8685 (3) 0.9366 (2) 0.9431 (3) 1.0592 0.8465 (3) 0.9144 (3) 1.018 (2) 0.855 (3) 0.5982 (4) 0.5318 0.7072 0.5401 0.62631 (8) 0.4553 (2) 0.7398 (3) 0.6716 0.8425

0.0318 (4) 0.038* 0.0299 (5) 0.03718 (17) 0.0301 (4) 0.036* 0.0315 (5) 0.0420 (4) 0.0317 (5) 0.038* 0.0318 (5) 0.0410 (6) 0.061* 0.061* 0.061* 0.0282 (4) 0.0262 (4) 0.0330 (4) 0.040* 0.040* 0.0276 (4) 0.033* 0.0267 (4) 0.0323 (4) 0.0296 (5) 0.035* 0.0280 (4) 0.0372 (5) 0.045* 0.045* 0.0444 (6) 0.067* 0.067* 0.067* 0.03668 (17) 0.0492 (5) 0.0446 (6) 0.067* 0.067*

Acta Cryst. (2015). C71, 229-238

sup-33

supporting information H3X3

0.1779

0.3291

0.7679

0.067*

Atomic displacement parameters (Å2)

N1A C2A S21A N3A C4A O41A C5A C6A C61A N1B C2B N21B N3B C4B O41B C5B C6B N61B C1X S2X O21X C3X

U11

U22

U33

U12

U13

U23

0.0387 (10) 0.0346 (11) 0.0509 (4) 0.0381 (10) 0.0393 (12) 0.0614 (11) 0.0392 (11) 0.0351 (11) 0.0499 (14) 0.0379 (9) 0.0306 (10) 0.0519 (12) 0.0376 (9) 0.0303 (10) 0.0439 (9) 0.0403 (11) 0.0356 (11) 0.0598 (13) 0.0444 (14) 0.0364 (3) 0.0627 (12) 0.0395 (13)

0.0285 (10) 0.0302 (11) 0.0380 (3) 0.0301 (10) 0.0330 (12) 0.0412 (10) 0.0344 (12) 0.0331 (12) 0.0391 (13) 0.0258 (9) 0.0246 (10) 0.0269 (10) 0.0242 (9) 0.0280 (11) 0.0261 (8) 0.0287 (11) 0.0272 (11) 0.0304 (10) 0.0398 (14) 0.0354 (3) 0.0468 (11) 0.0540 (16)

0.0284 (10) 0.0259 (11) 0.0250 (3) 0.0230 (9) 0.0239 (11) 0.0270 (9) 0.0222 (10) 0.0272 (11) 0.0329 (13) 0.0216 (9) 0.0235 (10) 0.0221 (9) 0.0220 (9) 0.0222 (10) 0.0277 (8) 0.0212 (10) 0.0225 (10) 0.0233 (10) 0.0487 (16) 0.0378 (3) 0.0340 (10) 0.0385 (14)

−0.0058 (8) −0.0001 (9) −0.0088 (3) −0.0060 (8) −0.0024 (9) −0.0201 (8) −0.0028 (9) 0.0007 (9) −0.0097 (11) −0.0013 (7) 0.0016 (8) −0.0058 (8) −0.0017 (7) 0.0028 (8) −0.0027 (6) −0.0004 (9) 0.0009 (8) −0.0099 (9) −0.0043 (11) 0.0023 (2) −0.0190 (9) 0.0049 (11)

0.0080 (8) 0.0083 (9) 0.0133 (2) 0.0086 (8) 0.0104 (9) 0.0176 (8) 0.0085 (9) 0.0065 (9) 0.0066 (11) 0.0078 (7) 0.0063 (8) 0.0119 (8) 0.0088 (7) 0.0065 (8) 0.0095 (7) 0.0098 (9) 0.0090 (8) 0.0132 (9) 0.0090 (12) 0.0071 (2) 0.0013 (8) 0.0042 (11)

0.0003 (8) −0.0005 (9) −0.0005 (2) −0.0033 (8) −0.0020 (9) −0.0059 (7) −0.0020 (9) −0.0015 (9) −0.0060 (10) −0.0002 (7) −0.0005 (8) −0.0009 (8) 0.0006 (7) −0.0026 (8) −0.0057 (6) 0.0003 (9) 0.0007 (8) −0.0006 (8) 0.0095 (12) 0.0025 (2) 0.0081 (8) 0.0008 (12)

Geometric parameters (Å, º) N1A—C2A N1A—C6A N1A—H1A C2A—N3A C2A—S21A N3A—C4A N3A—H3A C4A—O41A C4A—C5A C5A—C6A C5A—H5A C6A—C61A C61A—H61A C61A—H62A C61A—H63A N1B—C2B N1B—C6B C2B—N21B

Acta Cryst. (2015). C71, 229-238

1.353 (3) 1.370 (3) 0.882 (17) 1.363 (3) 1.668 (2) 1.383 (3) 0.877 (17) 1.238 (3) 1.428 (3) 1.350 (3) 0.9500 1.487 (3) 0.9800 0.9800 0.9800 1.326 (3) 1.367 (3) 1.334 (3)

N21B—H22B N3B—C4B N3B—H3B C4B—O41B C4B—C5B C5B—C6B C5B—H5B C6B—N61B N61B—H61B N61B—H62B C1X—S2X C1X—H1X1 C1X—H1X2 C1X—H1X3 S2X—O21X S2X—C3X C3X—H3X1 C3X—H3X2

0.858 (17) 1.393 (3) 0.902 (17) 1.263 (3) 1.388 (3) 1.397 (3) 0.9500 1.333 (3) 0.864 (18) 0.867 (17) 1.786 (3) 0.9800 0.9800 0.9800 1.5051 (19) 1.776 (3) 0.9800 0.9800

sup-34

supporting information C2B—N3B N21B—H21B

1.357 (3) 0.875 (17)

C3X—H3X3

0.9800

C2A—N1A—C6A C2A—N1A—H1A C6A—N1A—H1A N1A—C2A—N3A N1A—C2A—S21A N3A—C2A—S21A C2A—N3A—C4A C2A—N3A—H3A C4A—N3A—H3A O41A—C4A—N3A O41A—C4A—C5A N3A—C4A—C5A C6A—C5A—C4A C6A—C5A—H5A C4A—C5A—H5A C5A—C6A—N1A C5A—C6A—C61A N1A—C6A—C61A C6A—C61A—H61A C6A—C61A—H62A H61A—C61A—H62A C6A—C61A—H63A H61A—C61A—H63A H62A—C61A—H63A C2B—N1B—C6B N1B—C2B—N21B N1B—C2B—N3B N21B—C2B—N3B C2B—N21B—H21B C2B—N21B—H22B H21B—N21B—H22B

123.9 (2) 116.1 (18) 119.8 (18) 115.4 (2) 121.46 (17) 123.09 (17) 125.14 (19) 118.8 (18) 116.0 (18) 119.3 (2) 124.9 (2) 115.8 (2) 120.0 (2) 120.0 120.0 119.7 (2) 124.2 (2) 116.0 (2) 109.5 109.5 109.5 109.5 109.5 109.5 115.80 (18) 119.88 (19) 123.45 (19) 116.67 (19) 116.6 (19) 115.8 (19) 127 (3)

C2B—N3B—C4B C2B—N3B—H3B C4B—N3B—H3B O41B—C4B—C5B O41B—C4B—N3B C5B—C4B—N3B C4B—C5B—C6B C4B—C5B—H5B C6B—C5B—H5B N61B—C6B—N1B N61B—C6B—C5B N1B—C6B—C5B C6B—N61B—H61B C6B—N61B—H62B H61B—N61B—H62B S2X—C1X—H1X1 S2X—C1X—H1X2 H1X1—C1X—H1X2 S2X—C1X—H1X3 H1X1—C1X—H1X3 H1X2—C1X—H1X3 O21X—S2X—C3X O21X—S2X—C1X C3X—S2X—C1X S2X—C3X—H3X1 S2X—C3X—H3X2 H3X1—C3X—H3X2 S2X—C3X—H3X3 H3X1—C3X—H3X3 H3X2—C3X—H3X3

122.47 (18) 118.3 (17) 119.2 (17) 127.5 (2) 117.33 (19) 115.19 (19) 119.6 (2) 120.2 120.2 115.56 (19) 121.0 (2) 123.5 (2) 117.9 (19) 122 (2) 119 (3) 109.5 109.5 109.5 109.5 109.5 109.5 106.11 (13) 104.24 (12) 97.51 (13) 109.5 109.5 109.5 109.5 109.5 109.5

C6A—N1A—C2A—N3A C6A—N1A—C2A—S21A N1A—C2A—N3A—C4A S21A—C2A—N3A—C4A C2A—N3A—C4A—O41A C2A—N3A—C4A—C5A O41A—C4A—C5A—C6A N3A—C4A—C5A—C6A C4A—C5A—C6A—N1A C4A—C5A—C6A—C61A C2A—N1A—C6A—C5A C2A—N1A—C6A—C61A

−1.9 (3) 178.73 (17) 0.8 (3) −179.87 (18) −178.7 (2) 1.2 (3) 177.7 (2) −2.3 (3) 1.3 (3) −177.4 (2) 0.9 (3) 179.7 (2)

C6B—N1B—C2B—N21B C6B—N1B—C2B—N3B N1B—C2B—N3B—C4B N21B—C2B—N3B—C4B C2B—N3B—C4B—O41B C2B—N3B—C4B—C5B O41B—C4B—C5B—C6B N3B—C4B—C5B—C6B C2B—N1B—C6B—N61B C2B—N1B—C6B—C5B C4B—C5B—C6B—N61B C4B—C5B—C6B—N1B

179.03 (19) −1.2 (3) −0.3 (3) 179.50 (19) −178.12 (19) 1.9 (3) 178.0 (2) −2.1 (3) −178.8 (2) 1.0 (3) −179.5 (2) 0.7 (3)

Acta Cryst. (2015). C71, 229-238

sup-35

supporting information Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N1A—H1A···O21X N3A—H3A···N1B N21B—H21B···O41A N21B—H22B···O41Bi N3B—H3B···O41Bi N61B—H61B···O41Aii N61B—H62B···S21A

0.88 (2) 0.88 (2) 0.88 (2) 0.86 (2) 0.90 (2) 0.86 (2) 0.87 (2)

1.89 (2) 2.26 (2) 1.97 (2) 2.10 (2) 1.98 (2) 2.06 (2) 2.55 (2)

2.758 (3) 3.132 (3) 2.836 (3) 2.886 (3) 2.807 (2) 2.916 (3) 3.386 (2)

167 (3) 171 (2) 174 (3) 153 (3) 153 (2) 171 (3) 162 (3)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, y, z+1.

Acta Cryst. (2015). C71, 229-238

sup-36

donor-acceptor-donor synthon.

The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,...
2MB Sizes 0 Downloads 9 Views