Research Olga Kostopoulou, Andrea Rosen, Thomas Round, Ellen Wright, Abdel Douiri and Brendan Delaney

Early diagnostic suggestions improve accuracy of GPs: a randomised controlled trial using computer-simulated patients

Abstract Background

Designers of computerised diagnostic support systems (CDSSs) expect physicians to notice when they need advice and enter into the CDSS all information that they have gathered about the patient. The poor use of CDSSs and the tendency not to follow advice once a leading diagnosis emerges would question this expectation.

Aim

To determine whether providing GPs with diagnoses to consider before they start testing hypotheses improves accuracy.

Design and setting

Mixed factorial design, where 297 GPs diagnosed nine patient cases, differing in difficulty, in one of three experimental conditions: control, early support, or late support.

Method

Data were collected over the internet. After reading some initial information about the patient and the reason for encounter, GPs requested further information for diagnosis and management. Those receiving early support were shown a list of possible diagnoses before gathering further information. In late support, GPs first gave a diagnosis and were then shown which other diagnoses they could still not discount.

Results

Early support significantly improved diagnostic accuracy over control (odds ratio [OR] 1.31; 95% confidence interval [95%CI] = 1.03 to 1.66, P = 0.027), while late support did not (OR 1.10; 95% CI = 0.88 to 1.37). An absolute improvement of 6% with early support was obtained. There was no significant interaction with case difficulty and no effect of GP experience on accuracy. No differences in information search were detected between experimental conditions.

Conclusion

Reminding GPs of diagnoses to consider before they start testing hypotheses can improve diagnostic accuracy irrespective of case difficulty, without lengthening information search.

Keywords

clinical decision support systems; decision making; diagnosis; diagnostic errors.

e49 British Journal of General Practice, January 2015

INTRODUCTION Computerised systems for disease management, preventive care, and prescribing are used extensively in clinical practice.1 Computerised diagnostic support systems (CDSSs) have not enjoyed similar success over more than four decades of development,2 despite diagnostic error affecting large numbers of patients,3 and being the commonest cause of litigation against general physicians.4,5 The basic operation of the typical CDSS has remained the same throughout its history: the physician collects information about the patient, enters the information into the CDSS, and receives diagnostic suggestions. There are at least two problems with this approach. First, it requires that the physician decide to consult the system. Physicians, however, do not necessarily know when advice would help.6 In a naturalistic trial of Isabel, a physiciantriggered CDSS, junior doctors in paediatric ambulatory care sought and examined the system’s advice only around 2% of the time.7 The second problem is that system advice comes late in the diagnostic process. Physicians are known to generate few diagnostic hypotheses at the start of the encounter (within seconds), which determine what information they will gather and how they will interpret it.8–11 Consequently, advice given late in the consultation, after a fair amount of information has been gathered, may be less effective in two ways. First, the

O Kostopoulou, PhD, senior lecturer; A Rosen, MSc, research assistant; T Round, MBBS, clinical researcher; E Wright, MSc, clinical researcher; A Douiri, PhD, senior lecturer; BC Delaney, MD, Wolfson Chair of General Practice, Department of Primary Care and Public Health Sciences, School of Medicine, King’s College London, UK. Address for correspondence Olga Kostopoulou, Department of Primary Care and Public Health Sciences, Faculty of Life

information a physician will enter into the CDSS and its resulting advice may be biased by the hypotheses entertained.12 Physicians may omit checking important information or may normalise abnormal information that does not fit with their hypothesis.10 Second, once physicians have mentally represented the problem in a specific way and considered a potential cause, a cognitive set may develop,13,14 making them less open to the system’s suggestions. Therefore, a potentially more successful approach would be to present diagnostic suggestions as early as possible in the consultation, before physicians have started testing any diagnostic hypotheses. Such early suggestions could be triggered automatically, based on the reason for encounter (RfE) and information in the patient’s record. To test whether providing physicians with hypotheses early in the process improves diagnostic accuracy, detailed patient cases were constructed and presented to GPs to diagnose and manage via a web tool, while on the phone with a researcher. There is evidence that such simulations provide a valid measure of the quality of clinical practice.15 The performance of GPs who received early diagnostic suggestions was compared with that of an unaided group of GPs (control). To reflect the current approach to diagnostic support, a group of GPs was also included who received diagnostic suggestions late in the process, based on the information each GP had gathered.

Sciences & Medicine, Kings College London, Capital House, 42 Weston Street, London, SE1 3QD, UK. E-mail: [email protected] Submitted: 5 June 2014; Editor’s response: 10 July 2014; final acceptance: 5 August 2014. This is the full-length article (published online 1 Dec 2015) of an abridged version published in print. Cite this article as: Br J Gen Pract 2015; DOI: 10.3399/bjgp15X683161

How this fits in Currently, in order to use computerised diagnostic support systems (CDSSs), physicians are expected to recognise when they need advice, input all information that they have gathered about the patient into the system, and follow its advice, while they may have already settled on a diagnosis. This study shows that providing GPs with diagnoses to consider before they start gathering any information, based only on patient information from the record (age, sex, risk factors, and past medical history) and the current reason for encounter, can improve diagnostic accuracy, irrespective of case difficulty and GP experience. The improvement obtained in this study that used a fairly simple manipulation compares favourably with other studies that tested fully developed CDSSs.

METHOD Materials Chest pain, abdominal pain, and dyspnoea are common reasons for consulting GPs, and can be caused by a variety of conditions, some serious. Using a series of evidencebased reviews, nine patient cases were developed, three for each RfE. Each case contained background information about the patient, the RfE, and an exhaustive list of positive and negative symptoms and signs. The complete case information always allowed for a single correct diagnosis. In each case, a more common diagnosis could explain some of the patient’s symptoms (Box 1). Easy and more difficult cases were constructed to determine the effect of diagnostic support on a range of difficulty. To determine difficulty, a previous scheme by one of the authors was adapted.16 To determine the relevant diagnoses for each case accurately and ensure

Box 1. The correct diagnosis (underlined) and the main competing diagnosis for each patient case RfE Main competing diagnoses Chest pain

Angina versus musculoskeletal pain

Pulmonary embolism Tuberculosis versus versus lower respiratory lower respiratory tract infection tract infection

Abdominal pain

Crohn’s disease versus enteritis

Appendicitis versus UTI

Ovarian cancer versus IBS

Dyspnoea

Childhood asthma versus bronchitis

Cor pulmonale versus COPD exacerbation

COPD and aortic stenosis versus COPD alone

COPD = chronic obstructive pulmonary disorder. IBS = irritable bowel syndrome. RfE = reason for encounter. UTI = urinary tract infection.

completeness, diagnostic suggestions were adapted from DXplain, a stand-alone CDSS designed for general internal medicine (http://dxplain.org). The background information about each patient (age, sex, risk factors, current medications, and past medical history) and the RfE (chest pain, abdominal pain, or dyspnoea) were entered into DXplain. DXplain then delivered a list of suggested diagnoses, which was scrutinised by two authors who were GPs to ensure its appropriateness for UK primary care. The average list length was 17 diagnoses (range 9–22), and the correct diagnosis was always present. These diagnostic lists were used as such in early support and formed the basis for late support. Late support was individualised, taking into account the information that a GP had gathered. It consisted of a list of diagnoses that could still not be discounted at the end of the GPs information search. These diagnoses were a subset of the respective full list described above, to which predetermined exclusion rules were applied, formulated via clinical consensus. The rules determined the diagnoses that could be reasonably discounted from the full list, had a GP asked specific questions. For example, for the patient presenting with chest pain, if the GP had checked about chest wall tenderness (negative finding), it was assumed that costochondritis could be discounted. Sample size Sample size was calculated based on data from a previous study where 84 GPs diagnosed seven challenging cases on the computer.16 Mean diagnostic accuracy (proportion of correct diagnoses over all diagnoses) was 0.42, representing the expected accuracy of the control group. An intra-cluster correlation coefficient of 0.057 suggested significant clustering of responses within GPs. A two-sample comparison of proportions to detect an 8% increase in accuracy (from 0.42 to 0.50) with a power of 0.80 would require 633 responses per comparison group. This was multiplied by 1.456 (the ‘design effect’) and divided by nine cases, which gave 102 GPs per group.17 Participants Practices across England were invited to participate via the National Institute for Health Research Clinical Research Network.18 Their GPs could contact the study team, if they wished to participate. GPs were offered funding at standard clinical rates for an estimated 3-hour involvement,

British Journal of General Practice, January 2015 e50

Figure 1. The initial information that all GPs saw: example from a computer-simulated patient case.

Figure 2. The list of suggestions seen by the early support group: example of a computer-simulated patient case.

and individualised feedback, which they could use towards continuing professional development requirements. Procedure Participants saw the nine cases in random order, in one of three experimental conditions: control, early support, or late support. Assignment to experimental conditions followed a predetermined blocked randomisation sequence that ensured equal numbers of participants per condition. Data collection took place remotely over the internet using a web-tool designed specifically for the study. Participants were

in simultaneous phone communication with a researcher (one of the authors) who operated the site and guided them through the task during a single session. After receiving training on one case, participants proceeded to diagnose and manage the nine cases. At the start of each case, all GPs read the initial information about the computer-simulated patient and the RfE (Figure 1). They could then request more information in relation to history, physical examination, and investigations. After each question, the researcher chose the appropriate answer from a predetermined list, and this was displayed on the GP’s screen. If participants asked questions for which there was no predetermined answer, the researcher selected appropriately from a set of generic responses, such as ‘no’ or ‘normal’. When participants wished to finish the consultation, they entered the diagnosis that they considered most likely and selected their management decision from a list of options (refer, prescribe, arrange follow-up, give advice, or wait and see). They then continued with the next patient. The system automatically recorded all information requests in sequence, the timing of each request, the diagnoses, and the management decisions. This was the procedure for the control group. The early support group followed the same procedure with one important difference. After participants confirmed that they had read the initial information about the patient and the RfE, they were presented with a list of diagnostic suggestions (Figure 2). These suggestions were presented in random order for each participant. The list remained on the screen for a minimum of 20 seconds. In order to proceed, participants confirmed that they had read it. The list disappeared and they could start asking questions about the patient. They could recall the list at any time by pressing a button on the screen. GPs in the late support group proceeded in the same way as the control group, until they submitted a preliminary diagnosis and management, which triggered the list of diagnostic suggestions, presented in random order (Figure 3). GPs could then choose to ask more questions about the patient and/or change their diagnosis and management if they wished. Analyses Diagnosis was scored as correct/incorrect and management as appropriate/ inappropriate, based on whether patient harm could result from either failing or delaying to deal with the condition. The effect

e51 British Journal of General Practice, January 2015

Figure 3. Example screen with the list of suggestions seen by the late support group, after entering a diagnosis and management.

of experimental condition on diagnostic accuracy was measured using mixedeffects logistic regression. Case difficulty (low, moderate, or high) was included as a factor and GP experience as a covariate. Two interactions (condition with difficulty and condition with experience) were also included to determine whether the effect of condition differed by difficulty and experience. Results are first reported from a model with experimental condition as the only factor and then from the adjusted model, as recommended in the literature.19 The influence of experimental condition on information search (number of information requests and time taken) was explored using mixed-effects linear regression, and the influence of diagnostic accuracy on management was explored using mixedeffects logistic regression. All regression models used random intercept to account for clustered data within participants, and case as a repeated measure.20 Stata (version 13.1) was used to analyse the data. RESULTS A total of 297 GPs were recruited, including 30 trainees to reflect the proportion of trainees in the UK GP population. The sample had an average number of 9 years in general practice (SD = 9, median 5, range 0–34) and contained more women (54%) than the UK average (44%).21 Mean diagnostic accuracy (proportion of correct diagnoses over all diagnoses) was 0.63 for control (95% confidence interval [95% CI] = 0.60 to 0.67), 0.69 for early support (95% CI = 0.66 to 0.73), and 0.65 for late

support (95% = CI 0.62 to 0.70). There was a reliable effect of experimental condition on accuracy: the odds of diagnosing correctly were 1.31 times higher with early support than control (odds ratio [OR] 1.31; 95% CI = 1.03 to 1.66, P = 0.027). No reliable difference was detected between control and late support (OR 1.10; 95% CI = 0.88 to 1.37). When difficulty, experience, and the interactions were included in the model, the effect of early support almost doubled (OR 1.91; 95% CI = 1.13 to 3.21, P = 0.015). Cases of moderate and high difficulty were both diagnosed less accurately than easy cases (OR 0.43; 95% CI = 0.31 to 0.59, and OR 0.20; 95% CI = 0.14 to 0.28, respectively). No effect of experience (P = 0.41) and no significant interactions were detected. Neither was an effect of experimental condition on information search detected. Appropriateness of management was strongly associated with diagnostic accuracy (OR 52; 95% CI = 41.81 to 65.61, P 

Early diagnostic suggestions improve accuracy of GPs: a randomised controlled trial using computer-simulated patients.

Designers of computerised diagnostic support systems (CDSSs) expect physicians to notice when they need advice and enter into the CDSS all information...
950KB Sizes 0 Downloads 4 Views