Environmental Letters

ISSN: 0013-9300 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/lesa17

Emission Control of Gas Effluents from Geothermal Power Plants Robert C. Axtmann To cite this article: Robert C. Axtmann (1975) Emission Control of Gas Effluents from Geothermal Power Plants, Environmental Letters, 8:2, 135-146, DOI: 10.1080/00139307509437427 To link to this article: http://dx.doi.org/10.1080/00139307509437427

Published online: 02 Sep 2009.

Submit your article to this journal

Article views: 3

View related articles

Citing articles: 8 View citing articles

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=2esa20 Download by: [Universite Laval]

Date: 14 November 2015, At: 08:41

ENVIRONMENTAL LETTERS, 8 (21, 135-146 (1975)

EEIISSION CONTROL OF GAS EFFLUENTS FROM GEOTHERMAL POWER PLANTS

R o b e r t C . Axtmann Department o f Chemical E n g i n e e r i n g and Center f o r Environmental Studies Princeton University P r i n c e t o n , New J e r s e y 0 8 5 4 0 ,

ABSTRACT

Downloaded by [Universite Laval] at 08:41 14 November 2015

Geothermal s t e a m a t t h e w o r l d ' s f i v e l a r g e s t power p l a n t s c o n t a i n s f r o m 0 . 1 5 t o 30% n o n c o n d e n s a b l e g a s e s i n c l u d i n g C O H2S,

H2,

CH4,

N2,

H3B03,

and NH3.

2' A t four of the plants the

gases a r e f i r s t s e p a r a t e d from t h e steam and t h e n d i s c h a r g e d t o the environment; a t t h e f i f t h ,

t h e noncondensables exhaust d i -

r e c t l y t o t h e atmosphere a l o n g w i t h s p e n t steam.

Some C 0 2 a n d

s u l f u r e m i s s i o n r a t e s r i v a l t h o s e f r o m f o s s i l - f u e l e d p l a n t s on a

per m e g a w a t t - d a y b a s i s .

The ammonia a n d b o r o n e f f l u e n t s c a n i n -

t e r f e r e w i t h animal and p l a n t l i f e .

The e f f e c t s o f s u l f u r

( w h i c h e m e r g e s a s H2S b u t may o x i d i z e t o SO2) on e i t h e r a m b i e n t a i r q u a l i t y o r l o n g t e r m human h e a l t h a r e l a r g e l y unknown.

Nost

geothermal t u r b i n e s a r e equipped with d i r e c t contact condensers w h i c h c o m p l i c a t e e m i s s i o n c o n t r o l b e c a u s e t h e y p r o v i d e t w o or more p a t h w a y s f o r t h e e f f l u e n t s t o r e a c h t h e e n v i r o n m e n t .

Use

of d i r e c t c o n t a c t c o n d e n s e r s c o u l d p e r m i t e f f i c i e n t e m i s s i o n control i f coupled t o processes t h a t produce s a l e a b l e q u a n t i t i e s o f p u r i f i e d carbon d i o x i d e and e l e m e n t a l s u l f u r .

135 Copyright 0 1975 by hlarcel Dekker. Inc. All Rights Reserved. Neither this work nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying. microfilming. and recording.01 by any informationstorage and retrievalsystem, without permission in writing from the publisher.

Axnw INTRODUCTION G eo th ermal power i s e n v i r o n m e n t a l l y "cl ean", a c c o r d i n g t o t h e c o n v e n t i o n a l wisdom [ l ] .

at least

That i t enjoys such

a r e p u t a t i o n may r e f l e c t t h e m e a g r e e n v i r o n m e n t a l s c r u t i n y t h a t h a s been a c c o r d e d what i s , a s y e t , a r e l a t i v e l y i n s i g n i f i c a n t technology.

Goldsmith's b r i e f b u t somber a s s e s s m e n t h a s had

l i t t l e c i r c u l a t i o n and, i n any c a s e , a d d r e s s e s p o t e n t i a l geo-

t h e r m a l s o u r c e s i n C a l i f o r n i a [2].

Bowen's r o s i e r a n a l y s i s

draws a l m o s t e x c l u s i v e l y on p u b l i s h e d m a t e r i a l s t h a t d e s c r i b e

Downloaded by [Universite Laval] at 08:41 14 November 2015

a s i n g l e operating p l a n t , a l s o i n C a l i f o r n i a [3]. of the first, on-site,

The r e s u l t s

e n v i r o n m e n t a l s t u d y o f a working geo-

thermal p l a n t have y e t t o appear [4]. T h i s r e p o r t e x p l o r e s one a s p e c t of t h e impact o f geothermal power:

t h e d i s c h a r g e t o t h e environment o f noncondensable g a s e s ,

w i t h p a r t i c u l a r e m p h a s i s o n c a r b o n d i o x i d e an d h y d r o g e n s u l f i d e . The e f f l u e n t s from s i x g e o t h e r m a l f i e l d s a r e co m p ar ed i n m ag n i t u d e w i t h each o t h e r and w i t h t h o s e from f o s s i l - f u e l e d p l a n t s . Some e n v i r o n m e n t a l c o n s e q u e n c e s o f t h e d i s c h a r g e s a r e d i s c u s s e d ; problem a r e a s a r e d e f i n e d ; and a p r o c e s s t h a t c o u l d c o n t r o l t h e e m i s s i o n s and p r o d u c e m a r k e t a b l e b y - p r o d u c t s i s d e l i n e a t e d . CHARACTERISTICS OF GAS FRACTIONS 1.

Concentrations B o t h t h e t o t a l g a s c o n t e n t an d t h e r e l a t i v e c o n c e n t r a t i o n s

o f t h e c o n s t i t u e n t s d e p e n d i n t r i c a t e l y upon t h e g e o c h e m i s t r y o f t h e und erg ro u n d r e s e r v o i r [5-81.

Car b o n d i o x i d e is i n v a r i a b l y

t h e m a i n c o m p o n e n t ( 7 8 - 9 5 % ) w i t h l e s s e r c o n c e n t r a t i o n s o f H2S C.1-17%)>, H2 ( 1 - 1 3 % ) , CH4 ( 0 - 1 2 % ) , N2(0.2-9%),

an d NH3

(0-1.7%);

a n d , o c c a s i o n a l l y , t r a c e a m o u n t s o f a r g o n , e t h a n e , H3B03, HF,

a n d SO2 [9].

HCl,

Reports from a t l e a s t t h r e e f i e l d s i n d i c a t e 136

EMISSION CONTROL FOR GEOTHERMAL POWER PLANTS t h a t t h e t o t a l gas f r a c t i o n declines with e x p l o i t a t i o n [lo-121. T h i s , t o o , o c c u r s i n a c o m p l i c a t e d way:

a t W a i r a k e i , New Z e a l a n d

t h e t o t a l g a s c o n c e n t r a t i o n d e c r e a s e d by 5 0 % between 1960 and 1969 w h i l e t h e H2S f r a c t i o n r e m a i n e d v i r t u a l l y c o n s t a n t [ 1 2 ] . T a b l e I g i v e s t h e f i e l d - w i d e a v e r a g e s o f t o t a l g a s (w/o) and mole p e r c e n t a g e s o f C02 and H S a t t h e f i v e l a r g e s t power 2 s t a t i o n s [10,11,13.14];

and a t t h e B r o a d l a n d s , New Z e a l a n d f i e l d

1151, p o r t i o n s o f which h a v e d i s c h a r g e d f o r up t o t h r e e y e a r s b u t f o r which no power s t a t i o n h a s been b u i l t .

The T a b l e demon-

Downloaded by [Universite Laval] at 08:41 14 November 2015

s t r a t e s the s i g n i f i c a n t l y different characteristics of closely a d j a c e n t f i e l d s ( W a i r a k e i and B r o a d l a n d s a r e b a r e l y 10 m i l e s a p a r t ; L a r d a r e l l o and Monte Amiata,

l e s s than 40 miles), but

does n o t r e f l e c t i n t r a - f i e l d d i f f e r e n c e s .

In t h e r e l a t i v e l y

impermeable r e s e r v o i r a t B r o a d l a n d s , H S c o n c e n t r a t i o n s i n s t e a m 2 from a d j a c e n t w e l l s d i f f e r by a s much a s a f a c t o r o f t e n [S].

C02 and H2S C O N T E N T OF GEOTHERMAL STEAM ( 1 9 7 3 )

TABLE I.

Plant

Inrtalled Capacity

(MW[e]) G e y s e r s , USA Lardarello.

Italy

Wairokei, New Z e a l a n d

Average Gas ComC02 p o s i t i o n o f Steam Fraction. (w/o) ( v / o ) 1.0

79

5.0

365

4.9

94

1.6 5.0

192

0.1s

95

75

2.7

858

Monte Amiata, Italy

25 5

200 e s t )

8 Weight p e r c e n t a g e s .

*

(v/o)

396

Cerro P r i e t o , Mexico

Broadlands, New Z e a l a n d

H2S

15#

10-30

95

0.4

3.3

94

1.4

Ref.11 l i s t s no o t h e r c o n s t i t u e n t s .

Broadlands h a s been p a r t i a l l y c h a r a c t e r i z e d , s t a t i o n h a s been b u i l t .

137

b u t no power

AXTMANN ENVIRONMENTAL EFFECTS

The g e o t h e r m a l l i

r a t u r e is permeat 3 w i h references

t h e c o r r o s i v e e f f e c t s o f t h i s omnipresent and maladorous gas

I

--

p a r t i c u l a r l y on power s t a t i o n e q u i p m e n t s u c h a s e l c t r i c a l contacts.

W h i l e t h e e f f e c t s o f a c u t e d o s e s a r e known[16],

t h e geo-

t h e r m a l and i n d u s t r i a l hygiene l i t e r a t u r e s have l i t t l e t o o f f e r on t h e l o n g t e r m e f f e c t s on human h e a l t h o f s u b a c u t e e x p o s u r e .

Downloaded by [Universite Laval] at 08:41 14 November 2015

G o l d s m i t h e q u a t e s H2S e m i s s i o n s t o SO2 e m i s s i o n s [ Z ] ;

but while

H2S i s b e l i e v e d t o o x i d i z e i n t h e a t m o s p h e r e , t h e t i m e s c a l e o f t h e r e a c t i o n i s unknown [17].

S o f a r a s we a r e a w a r e , no

systematic experimental o r a n a l y t i c a l s t u d i e s e x i s t t h a t r e l a t e HzS e m i s s i o n s t o a m b i e n t a i r q u a l i t y a n d human h e a l t h .

2.

Ammonia a n d Boron The h a r m f u l e f f e c t o f d i s s o l v e d NH3 o n f i s h l i f e i n B i g

S u l f u r Creek h a s s t i m u l a t e d t h e o p e r a t o r s of t h e Geysers F i e l d t o r e i n j e c t c o n d e n s a t e f r o m t h e c o o l i n g t o w e r s ( s e e s e c t i o n on Pathways t o t h e Environment below) i n t o t h e h y d r o t h e r m a l r e s e r voir

[lo].

More r e c e n t l y ,

L a r d a r e l l o h a s begun r e i n j e c t i o n

e x p e r i m e n t s aimed a t p r e v e n t i n g d e l e t e r i o u s e f f e c t s o f b o r o n on n e a r b y a g r i c u l t u r a l o p e r a t i o n s [18]. 3.

co2 A s shown i n T a b l e 11, C 0 2 d i s c h a r g e r a t e s p e r u n i t o f e l e c -

t r i c a l p o w e r p r o d u c e d a t some g e o t h e r m a l p l a n t s r i v a l t h o s e f r o m fossil-fueled plants. C02 from man's

A c c o r d i n g t o t h e f a m o u s SMIC R e p o r t [ 1 9 ] ,

e n e r g y - p r o d u c i n g a c t i v i t i e s may t h r e a t e n t h e

s t a b i l i t y of g l o b a l c l i m a t e v i a t h e "green-house

138

e f f e c t " so t h a t

EMISSION CONTROL FOR GEOTHERMAL POWER PLANTS TABLE 11. SULFUR A N D C02 DISCHARGE RATES FROM GEOTHERMAL AND COAL PLANTS t

Plant

Sulfur

t onnes (hIW-day)-l

c02 tonnes(&IW-day)-'

t:;cq-

C e r r o P r i e t o , Mexico

0.73

55

4.2

315

Coal (3.5%S)#

0.27

270

25.0

25,000

0.19

5

62.0

1 580

0.15

30

18.0

3,600

Monte A m i a t a ,

Italy*

Broadlands, New Z e a l a n d

,

0.13

47

11.0

4,000

Coal (l.O%S)#

0.077

77

25.0

25,000

Geysers,

0.054

21

1.4

700

0.012

2

Lardarello,

Downloaded by [Universite Laval] at 08:41 14 November 2015

tonnEqday

Italy

USA

Wairakei, New Z e a l a n d

0.32

i

Daily r a t e s o f geothermal p l a n t s a t t h e r a t e d c a p a c i t i e s given i n Table I.

#

1 0 0 0 NW(e) c o a l p l a n t w i t h a t h e r m a l e f f i c i e n c y = 4 0 % j c a l o r i f i c v a l u e o f f u e l = l o 4 BTU/lb; s u l f u r r e t e n t i o n i n a s h = 15%. Assumes 20 w/o g a s f r a c t i o n . A c c o r d i n g t o R e f . 1 1 , t h e l a r g e s t u n i t ( 1 5 bIW[e]) a t Monte A m i a t a u t i l i z e s s t e a m w i t h 30 w/o g a s .

*

62

i n t h i s r e s p e c t , a t l e a s t , g e o t h e r m a l power may o f f e r l i t t l e improvement o v e r c o n v e n t i o n a l t e c h n o l o g y . THE POWER C Y C L E The v a p o r - d o m i n a t e d

r e s e r v o i r s o f n o r t h e r n C a l i f o r n i a and

I t a l y p r o d u c e s u p e r h e a t e d s t e a m which p a s s e s t h r o u g h c e n t r i f u g a l s e p a r a t o r s f o r removal o f e n t r a i n e d rock d u s t and l i q u i d w a t e r . Hot w a t e r r e s e r v o i r s , e . g . ,

i n New Z e a l a n d ,

a t Cerro Prieto,

and

most o t h e r l o c a t i o n s , d e l i v e r a s t e a m - w a t e r m i x t u r e t o t h e s e p a r a t o r s where t h e s t e a m f r a c t i o n i n c r e a s e s a s a r e s u l t o f p r e s s u r e reduction.

A t b o t h t y p e s o f r e s e r v o i r , s u b s t a n t i a l l y a l l t h e non-

condensable gas i n t h e o r i g i n a l f l u i d a r r i v e s a t t h e powerhouse.

139

A

x

m

The s t e a m expands a s i t p a s s e s t h r o u g h t h e t u r b i n e t o a

In o r d e r

c o n d e n s e r where c o o l i n g w a t e r removes t h e w a s t e h e a t .

t o maximize e n e r g y e x t r a c t i o n , a vacuum i s m a i n t a i n e d i n t h e condenser.

Noncondensable g a s e s , i n c l u d i n g i n l e a k a g e a i r ,

l i m i t t h e vacuum and a r e removed w i t h g a s - e j e c t o r s

multi-stage,

s t e a m j e t s or c e n t r i f u g a l e x h a u s t e r s .

--

either

A t a l l the

p l a n t s l i s t e d i n T a b l e I e x c e p t t h a t a t Monte Amiata ( c f . n e x t paragraph), d i r e c t c o n t a c t condensers a r e i n use:

the jet-type

a t L a r d a r e l l o , W a i r a k e i and C e r r o P r i e t o ; t h e p e r f o r a t e d t r a y ,

Downloaded by [Universite Laval] at 08:41 14 November 2015

cascade-type a t Geysers. The n o n c o n d e n s a b l e g a s f r a c t i o n i s much l a r g e r i n geot h e r m a l s t e a m t h a n i n t h e s t e a m o f c o n v e n t i o n a l p l a n t s and ejection costs are correspondingly greater.

About 5 % o f t h e

t o t a l s t e a m a t G e y s e r s i s consumed i n g a s e j e c t i o n

[lo].

Al-

though i t seldom h a s , geothermal s t a t i o n d e s i g n s h o u l d i n v o l v e a c a r e f u l balancing o f t h e degree o f gas e j e c t i o n with t h e improved e f f i c i e n c y t h a t o b t a i n s f r o m low t u r b i n e b a c k - p r e s s u r e

1201.

A t Plonte Amiata t h e g a s l o a d s a r e s o h i g h ( c f . T a b l e 11)

t h a t no a t t e m p t i s made a t s e p a r a t i o n or w a t e r c o o l i n g

... t h e

e x h a u s t e d s t e a m cum g a s i s e x p e l l e d d i r e c t l y t o t h e a t m o s p h e r e

[111. The c h o i c e o f d i r e c t c o n t a c t r a t h e r t h a n i n d i r e c t c o n t a c t ( s u r f a c e ) h e a t e x c h a n g e r s i s a n economic one.

The f o r m e r a r e

s i g n i f i c a n t l y c h e a p e r , r e q u i r e l e s s c o o l i n g w a t e r ( w i t h lower pumping c o s t s ) , and p r e s e n t f e w e r c o r r o s i o n p r o b l e m s .

They

a l s o c a n r e d u c e t h e l o a d on t h e g a s e j e c t o r s w i t h a c o r r e s p o n d i n g r i s e i n t h e n e t e l e c t r i c a l output because t h e water-soluble g a s components t e n d t o d i s s o l v e i n and d i s c h a r g e w i t h t h e

140

EMISSION CONTROL FOR GEOTHERMAL POWER PLANTS

cooling water.

A Measurement a t W a i r a k e i i n d i c a t e d t h a t a p p r o x -

i m a t e l y 5 0 % o f t h e C02

+

HZS e x i t s v i a t h i s r o u t e

[21].

Cooling Both C e r r o P r i e t o and G e y s e r s employ m e c h a n i c a l d r a f t cooling towers t o cool t h e t u r b i n e condensate.

No f r e s h w a t e r

s u p p l y i s r e q u i r e d : a t G e y s e r s a p p r o x i m a t e l y 8 0 % o f t h e cond e n s a t e e v a p o r a t e s i n t h e t o w e r ; t h e r e m a i n d e r , which c o n t a i n s a b o u t 2 - 4 0 ppm b o r o n , 2OO.ppm NH3, 450 ppm b i c a r b o n a t e and "some f i n e l y s u s p e n d e d s u l f u r " i s r e i n j e c t e d i n t o t h e r e s e r v o i r

Downloaded by [Universite Laval] at 08:41 14 November 2015

[lo].

Natural d r a f t cooling towers a r e i n u s e a t L a r d a r e l l o ;

a t Monte Amiata, a s m e n t i o n e d a b o v e , s t e a m and h o t g a s e x h a u s t d i r e c t l y t o t h e atmosphere.

Only a t t h e W a i r a k e i p l a n t ,

lo-

c a t e d on t h e b a n k s of t h e Waikato R i v e r , i s t h e r e a w a t e r s u p p l y s u f f i c i e n t f o r straight-through

cooling.

Pathways t o t h e Environment E x c e p t a t Monte Amiata, n o n c o n d e n s a b l e s p a r t i t i o n between t h e g a s e j e c t o r e f f l u e n t s , which emerge from s t a c k s on t h e power s t a t i o n r o o f ,

and t h e c o o l i n g w a t e r s t r e a m .

If the l a t t e r

c i r c u l a t e s t o a c o o l i n g t o w e r , i t c o n t a c t s an a t m o s p h e r e w i t h much l o w e r p a r t i a l p r e s s u r e s of C02 and H2S t h a n e x i s t w i t h i n t h e c o n d e n s e r and 80% o f t h e s t r e a m ' s volume e v a p o r a t e s .

As a

r e s u l t , t h e b u l k o f t h e g a s e s a r e d r i v e n o u t of s o l u t i o n and i n t o t h e t o w e r ' s plume. A t Wairakei,

t h e c o n d e n s a t e e f f l u e n t r a i s e s t h e C 0 2 con-

c e n t r a t i o n i n t h e Waikato R i v e r t o more t h a n f o u r t i m e s t h e normal l e v e l d e t e r m i n e d by e q u i l i b r a t i o n w i t h a t m o s p h e r i c C O z . T r a n s p o r t o f t h e e x c e s s t o t h e a t m o s p h e r e i s r a p i d , however, w i t h a t i m e c o n s t a n t o f a p p r o x i m a t e l y 20 minutes depending

141

A X m

m o s t l y upon t h e e x t e n t o f s u r f a c e wi nds [4]. s u l f u r e f f l u e n t is l e s s c l e a r .

The f a t e o f t h e

W h i l e w a t e r s e v e r a l miles down-

s t r e a m f r o m W a i r a k e i h a s t h e c h a r a c t e r i s t i c H2S o d o r , t h e r e i s some e v i d e n c e t h a t o x i d a t i o n t o s u l f a t e o c c u r s i n t h e c o n d e n s e r O x i d a t i o n t o SO2 i s r e p u t e d t o b e " v e r y f a s t " i n f o g or

[21].

c l o u d d r o p l e t s [ 1 7 ] s u c h as may e x i s t i n t h e j e t c o n d e n s e r s a t Wairakei.

So f a r a s we a r e a w a r e , n o g e o t h e r m a l p l a n t h a s y e t b e e n f i t t e d with emission controls.

P r o c e s s e s under development f o r

Downloaded by [Universite Laval] at 08:41 14 November 2015

t h e G e y s e r s f i e l d i n c l u d e b u r n i n g or s c r u b b i n g t h e g a s e j e c t o r e f f l u e n t s and a d d i n g o x i d a n t s t o t h e c o o l i n g t o w e r s t r e a m s . T h e s e m e a s u r e s c o u l d r e d u c e H2S e m i s s i o n b y 7 0 - 8 0 % [ 2 2 ] . I n summary, H2S a n d C02 i n g e o t h e r m a l s t e a m r e a c h e s t h e a t m o s p h e r e a l m o s t i m m e d i a t e l y f o l l o w i n g p o w e r e x t r a c t i o n or a f t e r s h o r t d e l a y s t h a t a r e a f u n c t i o n o f i n d i v i d u a l p l a n t configurations.

The g a s e j e c t o r e f f l u e n t s h a v e r e a s o n a b l y h i g h

c o n c e n t r a t i o n o f H2S (> 4 , 0 0 0 ppm a t N a i r a k e i [ 4 ] ) a n d C02 (Q 30% [12]).

The u s e o f d i r e c t c o n t a c t c o n d e n s e r s , h o w e v e r ,

insures

t h a t as much a s h a l f o f e a c h g a s i s d i l u t e d t o low a q u e o u s c o n c e n t r a t i o n s w h i c h f a l l t o w a r d t h e ppm r a n g e a s s o o n a s t h e s o l u t i o n s emerge from t h e p l a n t . DISCHARGE RATES T a b l e I1 compares t h e i n s t a n t a n e o u s and d a i l y t o t a l d i s c h a r g e r a t e s o f s u l f u r a n d C02 f r o m t h e p l a n t s l i s t e d i n T a b l e I a n d f r o m two c o a l - f i r e d p l a n t s .

The d a i l y r a t e s o f t h e g e o -

t h e r m a l p l a n t s a r e computed fro m t h e r a t e d c a p a c i t i e s g i v e n i n T a b l e I ; t h o s e f o r t h e c o a l p l a n t s a r e f o r a n o u t p u t o f 1 0 0 0 EllV(e)

142

EMISSION CONTROL FOR GEO'MERMAL POWFX PLANTS

There is no constant factor that relates the gas concentrations given in Table I to instantaneous rates (tons per megawatt-day) o f Table 11: the geothermal fluid from each field has a different enthalpy and the thermal efficiencies of the various plants differ widely. Elsewhere we have argued that effluent rates per unit of electrical energy can be misleading in quantitative comparisons of the environmental impact of geothermal and other power technologies [ 4 ] .

The instantaneous rates ignore the fact that

Downloaded by [Universite Laval] at 08:41 14 November 2015

a hot-water geothermal field continues to discharge at fullrate even when the power station is shut down.

Further, pre-

operational testing of the geothermal reservoir and discharges from "wild bores" (i.e.,

wells that cannot b e capped) contribute

an environmental burden which should be assessed against a plant. In the present case we wish to highlight the potential for producing valuable chemicals; and in the scheme outlined below, such production would be possible only while electrical power is produced. Derpite the caveats of the preceding paragraph, the data of Table I1 are startling from an environmental perspective.

Of

the six fields, only two discharge less sulfur per megawatt-day than does the low-sulfur coal plant; one field emits at a greater rate than the high-sulfur coal plant.

Goldsmith no'tes ominously

that sulfur emissions f r o m plants in California's Imperial Valley are likely to be closer in magnitude to those from Cerro Prieto than from Geysers [ 2 ] . Some of the numbers in Table I1 are in mild disagreement

with those of Bowen [ 3 ] ,

who compared the sulfur emission from a

143

AxRiA"

coal plant with an unrealistically high steam rate to the effluent rate from Geysers; and apparently assumed that the molecular weights of sulfur dioxide and hydrogen sulfide are identical.

CH EM ICA L PRODUCTI0N The industrial exploitation of the geothermal fluids has a long, spotted history.

The first boric acid works at Lardarello

.began operations in 1810 [ll].

Between 1934 and 1954 over

100,000 tons of C02 for dry ice production were mined from geothermal wells near the Salton Sea [23].

Pilot plant studies

Downloaded by [Universite Laval] at 08:41 14 November 2015

of the production of sulfur from hydrogen sulfide at the Namafjall field in Iceland were conducted in the early 1950's [24].

In 1968, Ross pointed out that the Broadlands, New Zealand

field had a sulfur production potential as high as 20,000 tons per year [25].

Several international conferences during the past

fifteen years have discussed the possibility of extracting valuable inorganic salts from geothermal brines. Preliminary design studies indicate that a dual-purpose m

chemical plant, coupled to the gas ejector effluents from indirect contact condensers, could provide emission control for some geothermal fields at minimum cost, and, possibly, at a profit. In one configuration, a low-temperature still cooled by absorption refrigeration would produce liquid C02.

The H2S effluent

from the C02 portion of the plant would then be rich enough to feed a conventional Claus plant for sulfur production.

The

highly exothermic Claus reactions would produce high-grade steam for sale to the power plant or for driving the absorption refrigerator. More detailed studies, now underway, will be the subject of a future communication. 144

EMISSION CONTROL FOR GEOTHERMAL POWER PLANTS

ACKNOWLEDGMENTS This work was supported by research grants from the Engineering Foundation and the Council on Environmental Studies of Princeton University; and by a travel grant (GF-41575) from the National Sciences Foundation.

It is a pleasure to acknowledge

useful discussions with Bernard0 Dominguez at Cerro Prieto, C.R. James at Wairakei, Ezio Tongiorgi at Pisa and David Barton at Geysers.

Downloaded by [Universite Laval] at 08:41 14 November 2015

REFERENCES S e e , e.g., John Lear, "Clean Power from Inside the Earth", Saturday Reuiew, Dec. 5 , 1970. bl. Goldsmith, Geothermal Resources in CaZifornia: Poten-

tials a n d Problems, Environmental Quality Laboratory Report No. 5, California Institute of Technology (1971). r31

R.G. Bowen, in Geothermal Energy, P. Kruger and C. Otte. eds., Stanford U. Press, Stanford, California, 1973, Chapter 10.

r41

R.C. Axtmann, Environmental Impact of a Geothermal Power Plant, Science 187 (in press).

[5J

A.J. Ellis, New Zealand J o u r n a l Sci. 5, 434-452 (1962).

r61

A.J. Ellis and N.A.J.

17J

A.J. Ellis and W.A.J. Mahon, Jr., Geochem. et Cosrnochim. A c t a 3, 519-539 (1967).

Mahon, Jr., ibid 9, 440-456 (1966).

W.A.J. Mahon and J.B. Finlayson, An. Journ. Sci. 272, 48-68 (1972). [9 I

O.H. Krikorian, in Geothermal Energy, P. Kruger and C. Otte eds., op. cit., Chapter 17, Table 5. J.P.

Finney, Chem. Eng. Prog. 6 8 171, 83-86 (1972).

Anonymous, Lardare110 and Monte Aniata: Electric Power b y Endogeneous Steam, Ente Nazionale per L'Energia Elettrica, Compartimento di Firenze, Direzione Studi e Ricerche, Roma, 1973.

145

I121

R . B . G l o v e r , I n t e r p r e t a t i o n of Gas C o m p o s i t i o n s f r o m t h e W a i r a k e i F i e l d o v e r Ten Y e a r s , U . N . Symp. D e v e l . U t i l i z a t i o n Geothermal Resources, Pisa, I t a l y , S e p t . 1970, Proc.

i n Press. E l l i s , New Z e a l a n d D e p a r t m e n t o f S c i e n t i f i c a n d I n d u s t r i a l R e s e a r c h R e p o r t CD118/16 RBG 31, May 1 8 , 1 9 7 1 .

131

A.J.

141

Anonymous, P l a n t a G e o t e r m o e Z e c t r i c a C e r r o P r i e t o , C o n i s i o n Federa2 d e E l e c t r i c i d a d , Mexico D.F., J u n e 1 9 7 3 .

151

P.R.L. Browne a n d A . J . (1970).

E l l i s , Am. Journ.

Sci. 2 6 9 , 9 7 - 1 3 1

Downloaded by [Universite Laval] at 08:41 14 November 2015

S. M i n e r , PreZiminary A i r P o l l u t i o n S u r v e y of i y d r o g e n S u l f i d e : A L i t e r a t u r e Review, U.S. D e p t . H e a l t h , E d u c a t i o n , and ,Welfare, N a t i o n a l A i r P o l l u t i o n C o n t r o l A d m i n i s t r a t i o n , R a l e i g h , N.C., October 1969.

Kellogg, R.D. Cadre, E.R. A l l e n , A.L. M a r t e l l , S c i e n c e 175, 587-596 (1972).

W.W. E.A.

P r o f . E. T o n g i o r g i , J u n e 1974.

Lazrus.

and

Pisa, I t a l y , p e r s o n a l communication,

I n a d v e r t e n t C l i m a t e M o d i f i c a t i o n : R e p o r t of t h e S t u d y of Man's Impact on C l i m a t e ( S M I C ) , M.I.T. P r e s s , C a m b r i d g e , Elass. C.R.

(1971),

pp.

84-86,

238-240.

J a m e s , New Zealand E n g i n e e r i n g 2 3 (6),

230-236

(1968).

I . K . W a l k e r , New Z e a l a n d D e p a r t m e n t o f S c i e n t i f i c a n d I n d u s t r i a l R e s e a r c h R e p o r t CD118/16-RBG/1SJ Nov. 3 0 , 1 9 6 6 . Anonymous. Environmental Data S t a t e m e n t G e v 8 e r s U n i t 1 4 . P a c i f i c G a s a n d E l e c t r i c a l Company, S a n F r a n c i s c o , C a l i f . J u l y 1973 1231

K o e n i g . Geothermal E z p l o r a t i o n i n t h e W e s t e r n U n i t e d Symp. D e v e l . U t i l i z a t i o n G e o t h e r m a l R e s o u r c e s , P i s a , I t a l y , 1970, Proc. i n p r e s s .

J.B.

S t a t e s , U.N.

L i n d a l , Timarit 40 ( 5 1 ,

84-87

(1955).

t241

B.

1251

J . B . R o s s , New Zealand Journal S c i e n c e , (1968).

11 ( 2 ) ,

249-257

Received October 22, 1974 Accepted December 13, 1974

146

Emission control of gas effluents from geothermal power plants.

Geothermal steam at the world's five largest power plants contains from 0.15 to 30% noncondensable gases including CO(2), H(2)S, H(2), CH(4), N(2), H(...
616KB Sizes 0 Downloads 0 Views