Full Paper

Influence of the Molecular Weight and Charge of Antibiotics on Their Release Kinetics From Gelatin Nanospheresa €wik, Jiankang Song, Jim C. E. Odekerken, Dennis W. P. M. Lo pez-Pe rez, Tim J. M. Welting, Fang Yang, John A. Jansen, Paula M. Lo Sander C. G. Leeuwenburgh* In this study, we investigated the fundamental relationship between the physicochemical characteristics of antibiotics and the kinetics of their release from gelatin nanospheres. We observed that antibiotics of high molecular weight (colistin and vancomycin) were released in a sustained manner from oppositely charged gelatin carriers for more than 14 d, as opposed to antibiotics of low molecular weight (gentamicin and moxifloxacin) which were released in a burst-like manner. The release kinetics of positively charged colistin strongly correlated with the rate of the enzymatic degradation of gelatin. To elucidate the differences among release kinetics of antibiotics, we explored the mechanism of interactions between antibiotics and gelatin nanospheres by monitoring the kinetics of release of antibiotics as a function of pH, ionic strength, and detergent concentrations. These studies revealed that the interactions between antibiotics and gelatin nanospheres were mainly dominated by (i) strong electrostatic forces for colistin; (ii) strong hydrophobic and electrostatic forces for vancomycin; (iii) weak electrostatic and hydrophobic forces for gentamicin; and (iv) weak hydrophobic forces for moxifloxacin. These results confirm that release of antibiotics from gelatin nanospheres strongly depends on the physicochemical characteristics of the antibiotics.

pez-Perez, F. Yang, J. A. Jansen, S. C. G. J. Song, P. M. Lo Leeuwenburgh Department of Biomaterials, Radboud University Medical Center, P.O. Box 9101 6500 HB, Nijmegen, The Netherlands E-mail: [email protected] Fax: þ31 (0)24 3614657 J. C. E. Odekerken, T. J. M. Welting Department of Orthopedic Surgery, Laboratory for Experimental Orthopedics, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, The Netherlands €wik D. W. P. M. Lo Department of Bio-Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands a Supporting Information is available online from the Wiley Online Library or from the author.

Macromol. Biosci. 2015, 15, 901–911 ß 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1. Introduction Bacterial infections occur when harmful bacteria invade and reproduce in the host. This infectious disease can develop into serious, even life-threatening conditions such as osteomyelitis.[1] This type of infection is associated with a high morbidity[2] and occurs when a complicated bone fracture is exposed to bacteria.[3] Traditional treatment modalities for osteomyelitis involve systemic administration of antibiotics for several weeks to months,[4] which is often associated with toxicity, antibiotic resistance, and recurrence of infections.[5,6] In addition, bone infections are frequently caused by more than one type of bacteria,[7,8] which requires the delivery of different types of antibiotics from a single carrier to avoid ineffective treatment and

wileyonlinelibrary.com

DOI: 10.1002/mabi.201500005

901

J. Song et al. www.mbs-journal.de

antibiotic resistance. A powerful strategy to reduce the complications and side-effects related to the systemic use of antibiotics involves local and sustained delivery of multiple antibiotics at the site of infection. In order to facilitate this strategy, a suitable carrier system should be developed that is biocompatible, safe, and most importantly, biodegradable in a controllable manner.[9] Gelatin, a denatured protein prepared by hydrolysis of collagen, is particularly attractive as a drug carrier for controlled release due to its non-toxicity, bioactivity, cost-effectiveness, tunable charge, and degradability.[10–13] Gelatin nanospheres (GNs) have been extensively studied as carriers for controlled delivery of therapeutic biomolecules of high molecule weight such as growth factors[14–20] and nucleic acids.[21–26] These macromolecules were shown to bind to oppositely charged gelatin carriers through the formation of polyion complexes[12] between macromolecules and gelatin matrices, thereby facilitating sustained delivery of bioactive macromolecules. However, it is still unknown if small biomolecules of low molecular weight ( vancomycin (high molecular weight and neutral) > gentamicin (low molecular weight and charge) > moxifloxacin (low molecular weight and neutral).

Abbreviations BCA Bicinchoninic acid ELISA Enzyme-linked immunosorbent assay GNs Gelatin nanospheres GNLs Gelatin nanospheres of low cross-linking densities GNHs Gelatin nanospheres of high cross-linking densities IEP Isoelectric point RP-HPLC Reverse phase high performance liquid chromatography TNBS 2,4,6-trinitrobenzene sulfonic acid

Figure 6. Correlations between antibiotics release and degradation of gelatin nanospheres of low (A) and high (B) cross-linking densities.

910

Macromol. Biosci. 2015, 15, 901–911 ß 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.MaterialsViews.com

Influences of the Molecular Weight and Charge of Antibiotics. . . www.mbs-journal.de

Acknowledgements: This work was supported by the Chinese Scholarship Council under foundation number 201206150058. The authors acknowledge EU Marie Curie Actions, Alea Jacta EST for pez-Perez (FP7providing the post-doctoral grant to Paula M. Lo PEOPLE-2011-IOF). The authors gratefully acknowledge Martijn Martens for his assistance with the HPLC measurements. Received: January 8, 2015; Revised: February 9, 2015; Published online: March 13, 2015; DOI: 10.1002/mabi.201500005 Keywords: antibiotics; bone infection; controlled release; gelatin nanospheres

[1] M. H. Xiong, Y. Bao, X. Z. Yang, Y. H. Zhu, J. Wang, Adv. Drug Deliv. Rev. 2014, 78C, 63. [2] I. Marriott, Front Cell Infect. Microbiol. 2013, 3, 101. [3] H. C. Yun, J. G. Branstetter, C. K. Murray, J. Trauma 2008, 64, S163. [4] A. L. L. Lima, P. R. Oliveira, V. C. Carvalho, S. Cimerman, E. Savio, Braz. J. Infect. Dis. 2014, 18, 526. [5] K. E. Beenken, J. K. Smith, R. A. Skinner, S. G. McLaren, W. Bellamy, M. J. Gruenwald, H. J. Spencer, J. A. Jennings, W. O. Haggard, M. S. Smeltzer, J. Biomater. Appl. 2014, 29, 514. [6] C. Makarov, V. Cohen, A. Raz-Pasteur, I. Gotman, Eur. J. Pharm. Sci. 2014, 62, 49. [7] C. F. Lord, M. C. Gebhardt, W. W. Tomford, H. J. Mankin, J. Bone Joint Surg. Am. 1988, 70, 369. [8] J. H. Calhoun, M. M. Manring, M. Shirtliff, Semin. Plast. Surg. 2009, 23, 59. [9] T. N. Vo, F. K. Kasper, A. G. Mikos, Adv. Drug Deliv. Rev. 2012, 64, 1292. [10] A. O. Elzoghby, J. Control. Release 2013, 172, 1075. [11] A. Kumari, S. K. Yadav, S. C. Yadav, Colloids Surf. B 2010, 75, 1. [12] S. Young, M. Wong, Y. Tabata, A. G. Mikos, J. Control. Release 2005, 109, 256. [13] R. Schrieber, H. Gareis, ‘‘Gelatin Handbook: Theory and Industrial Practice’’, Wiley-VCH Verlag, Weinheim 2007. [14] Z. S. Patel, M. Yamamoto, H. Ueda, Y. Tabata, A. G. Mikos, Acta Biomater. 2008, 4, 1126.

www.MaterialsViews.com

[15] H. Wang, O. C. Boerman, K. Sariibrahimoglu, Y. Li, J. A. Jansen, S. C. Leeuwenburgh, Biomaterials 2012, 33, 8695. [16] H. Wang, Q. Zou, O. C. Boerman, A. W. Nijhuis, J. A. Jansen, Y. Li, S. C. Leeuwenburgh, J. Control. Release 2013, 166, 172. [17] T. A. Holland, Y. Tabata, A. G. Mikos, J. Control. Release 2003, 91, 299. [18] Z. S. Patel, S. Young, Y. Tabata, J. A. Jansen, M. E. Wong, A. G. Mikos, Bone 2008, 43, 931. [19] Y. Kuroda, H. Akiyama, K. Kawanabe, Y. Tabata, T. Nakamura, J. Bone Miner. Metab. 2010, 28, 608. [20] J. van der Stok, H. Wang, S. Amin Yavari, M. Siebelt, M. Sandker, J. H. Waarsing, J. A. Verhaar, H. Jahr, A. A. Zadpoor, S. C. Leeuwenburgh, H. Weinans, Tissue Eng. Part A 2013, 19, 2605. [21] F. K. Kasper, T. Kushibiki, Y. Kimura, A. G. Mikos, Y. Tabata, J. Control. Release 2005, 107, 547. [22] N. Doi, J. I. Jo, Y. Tabata, J. Biomater. Sci. Polym. Ed. 2011. [23] H. Ishikawa, Y. Nakamura, J.-i. Jo, Y. Tabata, Biomaterials 2012, 33, 9097. [24] S. Kommareddy, M. Amiji, Bioconjug. Chem. 2005, 16, 1423. [25] S. Kommareddy, M. Amiji, Nanomedicine 2007, 3, 32. [26] P. Magadala, M. Amiji, Aaps J. 2008, 10, 565. [27] S. R. Shah, A. M. Henslee, P. P. Spicer, S. Yokota, S. Petrichenko, S. Allahabadi, G. N. Bennett, M. E. Wong, F. K. Kasper, A. G. Mikos, Pharm. Res. 2014. [28] H. Wang, M. B. Hansen, D. W. Lowik, J. C. van Hest, Y. Li, J. A. Jansen, S. C. Leeuwenburgh, Adv. Mater. 2011, 23, H119. [29] C. A. Ventura, S. Tommasini, E. Crupi, I. Giannone, V. Cardile, T. Musumeci, G. Puglisi, Eur. J. Pharm. Biopharm. 2008, 68, 235. [30] M. Hagihara, C. Sutherland, D. P. Nicolau, J. Chromatogr. Sci. 2013, 51, 201. [31] P. Gobin, F. Lemaitre, S. Marchand, W. Couet, J. C. Olivier, Antimicrob. Agents Chemother. 2010, 54, 1941. [32] J. Song, S. C. Leeuwenburgh, Ther. Deliv. 2014, 5, 943. [33] W. Lesniak, J. M. Laren, W. R. Harris, V. L. Pecoraro, J. Schacht, Carbohydr. Res. 2003, 338, 2853. [34] B. Jeong, Y. H. Bae, S. W. Kim, J. Control. Release 2000, 63, 155. [35] C. S. Mangelsdorf, L. R. White, J. Chem. Soc., Faraday Trans. 1998, 94, 2441. [36] A. Travesset, S. Vangaveti, J. Chem. Phys. 2009, 131. [37] S. Lemaire, P. M. Tulkens, F. Van Bambeke, Antimicrob. Agents Chemother. 2011, 55, 649.

Macromol. Biosci. 2015, 15, 901–911 ß 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

911

Influence of the Molecular Weight and Charge of Antibiotics on Their Release Kinetics From Gelatin Nanospheres.

In this study, we investigated the fundamental relationship between the physicochemical characteristics of antibiotics and the kinetics of their relea...
784KB Sizes 2 Downloads 9 Views