Article pubs.acs.org/Langmuir

Magnetic Nanoparticle-Supported Lipid Bilayers for Drug Delivery Stephanie J. Mattingly,† Martin G. O’Toole,‡ Kurtis T. James,‡ Geoffrey J. Clark,§ and Michael H. Nantz*,† †

Department of Chemistry, ‡Department of Biomedical Engineering, J.B. Speed School of Engineering, and §School of Medicine, University of Louisville, Louisville, Kentucky 40292, United States S Supporting Information *

ABSTRACT: Magnetic nanoparticle-supported lipid bilayers (SLBs) constructed around core−shell Fe3O4−SiO2 nanoparticles (SNPs) were prepared and evaluated as potential drug carriers. We describe how an oxime ether lipid can be mixed with SNPs to produce lipid−particle assemblies with highly positive ζ potential. To demonstrate the potential of the resultant cationic SLBs, the particles were loaded with either the anticancer drug doxorubicin or an amphiphilic analogue, prepared to facilitate integration into the supported lipid bilayer, and then examined in studies against MCF-7 breast cancer cells. The assemblies were rapidly internalized and exhibited higher toxicity than treatments with doxorubicin alone. The magnetic SLBs were also shown to increase the efficacy of unmodified doxorubicin.



INTRODUCTION Iron oxide, Fe3O 4/Fe2O3 , nanoparticles (NPs) possess magnetic properties that enable both diagnostic and therapeutic applications, such as magnetic resonance imaging through contrast enhancement, 1 magnetic drug targeting, 2 and thermotherapy through inductive heating using an alternating magnetic field.3 Surface modifications to the particles can confer biocompatibility4 and enhance circulation time.5 Moreover, the attachment of targeting ligands6 and drugs holds promise for the ultimate goal of achieving directed, minimaldose chemotherapy. This versatility makes magnetic nanoparticles attractive candidates as multifunctional drug delivery systems. Modifications to the NP surface are typically required to generate stable aqueous colloids and render the catalytically active7,8 surface inert for the sake of ligand/drug stability. NP size considerations are also critical in biological applications because particles must fall within a range that allows for cellular uptake while avoiding rapid clearance by the reticuloendothelial system (≈10−100 nm).9 Further, a self-assembly process for the formation of a therapeutic nanosystem is most desirable because ultimate broad application would depend upon its ease of preparation. Coating NPs with silicon dioxide is often employed, particularly for multicomponent nanosystems.10 Creating a core−shell Fe3O4−SiO2 structure is desirable because the silica shell enhances the hydrophilicity of the particle, reduces cellular toxicity,11 and renders the surface less reactive12 while largely preserving its magnetic properties.12 The surface of silicacoated NPs (SNPs) is inherently negatively charged because of the presence of silanol groups, but positively charged particles may be more desirable for oncological applications considering © XXXX American Chemical Society

the favorable pairing of cationic particles with the negative exterior of many cancer cells.13,14 Dual-chain lipids, typically zwitterionic phospholipids, have been used to coat NPs and have been shown to self-assemble into bilayers surrounding anionic NPs, forming what are termed classical magnetoliposomes.15,16 In that the lipid layer is directly bound to the particle surface, these assemblies differ from extruded magnetoliposomes that are composed of NPs entrapped within the aqueous core of a lipid vesicle.17 Direct attachment of lipids at a NP surface offers the advantage of size control. Namely, magnetopliposome size is dictated by the dimensions of the NP, a tunable property. Thus, classical magnetoliposomes are usually smaller (50 000 cells (3.6 μM with respect to incorporated anthracycline). The ease of formation, ability to accommodate polar as well as amphiphilic small molecules, and ready cellular internalization point to the potential of SLBs derived from Fe3O4−SiO2 nanoparticles as magnetic drug delivery vehicles. The possibility to augment therapies by exploiting magnetic properties, such as using tandem techniques of magnetic targeting, imaging, or inductive heating, is an attractive next step for the development of magnetic SLBs.

Figure 6. Stacked bright-field (lower) and fluorescence (upper) images of MCF-7 cells after 2 h of treatment with (left) DOX-AHloaded SNP-SLB and (right) DOX-loaded SNP-SLB. Scale bars are 200 μm.



Significantly higher fluorescence was observed in cells treated with DOX-AH SLBs. Although the two drug-loaded SLBs function nearly identically with respect to inducing cell death, there is an apparent difference in the nature of their internalization. We hypothesize that the apparent difference emanates from the mode of incorporation during SLB formation. Namely, in contrast to bilayer incorporation, DOX closely associates with the SNP surface via electrostatic and hydrogen-bonding interactions and, thus, still benefits from the uptake enhancement conferred by the SLB formulation; however, DOX undergoes greater fluorescence quenching because of the tighter association with the SNP core. Although unanticipated, we were gratified to find that the SNP-SLB formulations increased the efficacy of both hydrophilic and amphiphilic forms of a representative drug. Still, for the purpose of DOX delivery by SLBs, an acyl hydrazone modification may yet be advantageous, in that DOX hydrazones have been shown to be more effective against multidrug-resistant cell lines.45

ASSOCIATED CONTENT

S Supporting Information *

Detailed experimental procedures, including syntheses and full spectral characterizations of lipid 1 and DOX-AH, DLS and ζpotential measurements of SLB formulations, and bright-field and fluorescence microscope images of MCF-7 cells treated with SNP/SLB formulations. This material is available free of charge via the Internet at http://pubs.acs.org.



AUTHOR INFORMATION

Corresponding Author

*Telephone: 502-852-8069. E-mail: michael.nantz@louisville. edu. Notes

The authors declare no competing financial interest. E

DOI: 10.1021/la504830z Langmuir XXXX, XXX, XXX−XXX

Article

Langmuir



surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 2009, 20 (11), 115103. (14) Zhang, Y.; Yang, M.; Portney, N.; Cui, D.; Budak, G.; Ozbay, E.; Ozkan, M.; Ozkan, C. Zeta potential: A surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed. Microdevices 2008, 10 (2), 321− 328. (15) De Cuyper, M.; Joniau, M. Magnetoliposomes. Eur. Biophys. J. 1987, 15, 311−319. (16) Rodrigues, A. R. O.; Gomes, I. T.; Almeida, B. G.; Araujo, J. P.; Castanheira, E. M. S.; Coutinho, P. J. G. Magnetoliposomes based on nickel/silica core/shell nanoparticles: Synthesis and characterization. Mater. Chem. Phys. 2014, 148 (3), 978−987. (17) Soenen, S.; Hodenius, M.; De Cuyper, M. Magnetoliposomes: Versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine 2009, 4 (2), 177−191. (18) De Cuyper, M.; Soenen, S. J. H. Cationic magnetoliposomes. Methods Mol. Biol. 2010, 605, 97−111. (19) Soenen, S. J. H.; Brisson, A. R.; De Cuyper, M. Addressing the problem of cationic lipid-mediated toxicity: The magnetoliposome model. Biomaterials 2009, 30 (22), 3691−3701. (20) Soenen, S. J. H.; De Cuyper, M. How to assess cytotoxicity of (iron oxide-based) nanoparticles. A technical note using cationic magnetoliposomes. Contrast Media Mol. Imaging 2011, 6 (3), 153− 164. (21) Soenen, S. J. H.; Vercauteren, D.; Braeckmans, K.; Noppe, W.; De Smedt, S.; De Cuyper, M. Stable long-term intracellular labeling with fluorescently tagged cationic magnetoliposomes. ChemBioChem 2009, 10 (2), 257−267. (22) Biswas, S.; Knipp, R. J.; Gordon, L. E.; Nandula, S. R.; Gorr, S.U.; Clark, G. J.; Nantz, M. H. Hydrophobic oxime ethers: A versatile class of pDNA and siRNA transfection lipids. ChemMedChem 2011, 6, 2063−2069. (23) Junquera, E.; Aicart, E. Cationic lipids as transfecting agents of DNA in gene therapy. Curr. Top. Med. Chem. 2014, 14 (5), 649−663. (24) Biswas, S.; Gordon, L. E.; Clark, G. J.; Nantz, M. H. Click assembly of magnetic nanovectors for gene delivery. Biomaterials 2011, 32, 2683−2688. (25) Pan, X.; Guan, J.; Yoo, J.-W.; Epstein, A. J.; Lee, L. J.; Lee, R. J. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int. J. Pharm. 2008, 358 (1-2), 263−270. (26) Jiang, S.; Eltoukhy, A.; Love, K.; Langer, R.; Anderson, D. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett. 2013, 13 (3), 1059−1064. (27) Liu, J.; Jiang, X.; Ashley, C.; Brinker, C. J. Electrostatically mediated liposome fusion and lipid exchange with a nanoparticlesupported bilayer for control of surface charge, drug containment, and delivery. J. Am. Chem. Soc. 2009, 131 (22), 7567−7569. (28) Ashley, C. E.; Carnes, E. C.; Epler, K. E.; Padilla, D. P.; Phillips, G. K.; Castillo, R. E.; Wilkinson, D. C.; Wilkinson, B. S.; Burgard, C. A.; Kalinich, R. M.; Townson, J. L.; Chackerian, B.; Willman, C. L.; Peabody, D. S.; Wharton, W.; Brinker, C. J. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticlesupported lipid bilayers. ACS Nano 2012, 6 (3), 2174−2188. (29) Dengler, E. C.; Liu, J.; Kerwin, A.; Torres, S.; Olcott, C. M.; Bowman, B. N.; Armijo, L.; Gentry, K.; Wilkerson, J.; Wallace, J.; Jiang, X.; Carnes, E. C.; Brinker, C. J.; Milligan, E. D. Mesoporous silicasupported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. J. Controlled Release 2013, 168 (2), 209−224. (30) Li, S.-Z.; Ma, Y.; Yue, X.-L.; Cao, Z.; Dai, Z.-F. One-pot construction of doxorubicin conjugated magnetic silica nanoparticles. New J. Chem. 2009, 33 (12), 2414−2418. (31) Azizi, N.; Saidi, M. Highly chemoselective addition of amines to epoxides in water. Org. Lett. 2005, 7 (17), 3649−3651. (32) Kuwabe, S.; Torraca, K.; Buchwald, S. Palladium-catalyzed intramolecular C−O bond formation. J. Am. Chem. Soc. 2001, 123 (49), 12202−12206.

ACKNOWLEDGMENTS The authors thank the Kentucky Science and Engineering Foundation (2190-RDE-013) for financial support. The authors thank the Conn Center for Renewable Energy at the University of Louisville for assistance with the calorimetry measurements. The authors also thank Dr. Katharine Hobbing for advice on cell culture and microscopy, Dr. Ralph Knipp for preparing SNPs, and Sara Biladeau and Abdelqader Jamhawi for general assistance.



ABBREVIATIONS USED NP, nanoparticle; SNP, core−shell Fe3O4−SiO2 nanoparticle; ML, magnetoliposome; CML, cationic magnetoliposome; SLB, supported lipid bilayer; DLS, dynamic light scattering; DSC, differential scanning calorimetry; SQUID, superconducting quantum interference device; TEM, transmission electron microscopy; DOX, doxorubicin hydrochloride; DOX-AH, doxorubicin acyl hydrazone; FBS, fetal bovine serum; PBS, phosphate-buffered saline



REFERENCES

(1) Bulte, J. W. M.; Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004, 17, 484−499. (2) Ma, H.-L.; Qi, X.-R.; Ding, W.-X.; Maitani, Y.; Nagai, T. Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. J. Biomed. Mater. Res., Part A 2008, 84 (3), 598−606. (3) Thiesen, B.; Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 2008, 24 (6), 467−474. (4) Wei, H.; Insin, N.; Lee, J.; Han, H.-S.; Cordero, J.; Liu, W.; Bawendi, M. Compact zwitterion-coated iron oxide nanoparticles for biological applications. Nano Lett. 2012, 12 (1), 22−25. (5) Pastorino, F.; Marimpietri, D.; Brignole, C.; Paolo, D. D.; Pagnan, G.; Daga, A.; Piccardi, F.; Cilli, M.; Allen, T. M.; Ponzoni, M. Ligandtargeted liposomal therapies of neuroblastoma. Curr. Med. Chem. 2007, 14, 3070−3078. (6) Bothun, G.; Lelis, A.; Chen, Y.; Scully, K.; Anderson, L.; Stoner, M. Multicomponent folate-targeted magnetoliposomes: Design, characterization, and cellular uptake. Nanomedicine 2011, 7 (6), 797−805. (7) Wang, L.; Zhang, F.; Chen, J. Carbonyl sulfide derived from catalytic oxidation of carbon disulfide over atmospheric particles. Environ. Sci. Technol. 2001, 35, 2543−2547. (8) Kwan, T.; Fujita, Y. Chemisorption of CO2 over oxide catalysts of spinel type. J. Res. Inst. Catal., Hokkaido Univ. 1953, 2 (2), 110−116. (9) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997, 62 (21), 7512−7515. (10) Li, C.; Ma, C.; Wang, F.; Xi, Z.; Wang, Z.; Deng, Y.; He, N. Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites. J. Nanosci. Nanotechnol. 2012, 12 (4), 2964− 2972. (11) Malvindi, M. A.; De Matteis, V.; Galeone, A.; Brunetti, V.; Anyfantis, G. C.; Athanassiou, A.; Cingolani, R.; Pompa, P. P. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS One 2014, 9 (1), No. e85835. (12) Pinho, S. L. C.; Pereira, G. A.; Voisin, P.; Kassem, J.; Bouchaud, V.; Etienne, L.; Peters, J. A.; Carlos, L.; Mornet, S.; Geraldes, C. F. G. C.; Rocha, J.; Delville, M.-H. Fine tuning of the relaxometry of γFe2O3@SiO2 nanoparticles by tweaking the silica coating thickness. ACS Nano 2010, 4, 5339−5349. (13) Villanueva, A.; Cañete, M.; Roca, A.; Calero, M.; VeintemillasVerdaguer, S.; Serna, C.; Morales, M.; Miranda, R. The influence of F

DOI: 10.1021/la504830z Langmuir XXXX, XXX, XXX−XXX

Article

Langmuir (33) Effenberger, K.; Breyer, S.; Schobert, R. Modulation of doxorubicin activity in cancer cells by conjugation with fatty acyl and terpenyl hydrazones. Eur. J. Med. Chem. 2010, 45 (5), 1947−1954. (34) Dirksen, A.; Dawson, P. Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. Bioconjugate Chem. 2008, 19 (12), 2543−2548. (35) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem., Int. Ed. 2001, 40 (11), 2004−2021. (36) Zhi, D.; Zhang, S.; Cui, S.; Zhao, Y.; Wang, Y.; Zhao, D. The headgroup evolution of cationic lipids for gene delivery. Bioconjugate Chem. 2013, 24 (4), 487−519. (37) Nantz, M. H.; Dicus, C. W.; Hilliard, B.; Yellayi, S.; Zou, S.; Hecker, J. G. The benefit of hydrophobic domain asymmetry on the efficacy of transfection as measured by in vivo imaging. Mol. Pharmaceutics 2010, 7 (3), 786−794. (38) Le Corre, S. S.; Berchel, M.; Le Gall, T.; Haelters, J.-P.; Lehn, P.; Montier, T.; Jaffres, P.-A. Cationic trialkylphosphates: Synthesis and transfection efficacies compared to phosphoramidate analogues. Eur. J. Org. Chem. 2014, 2014 (36), 8041−8048. (39) Tian Hu, S.; Brändle, E.; Zbinden, G. Inhibition of cardiotoxic, nephrotoxic and neurotoxic effects of doxorubicin by ICRF-159. Pharmacology 1983, 26 (4), 210−220. (40) Carvalho, F. S.; Burgeiro, A.; Garcia, R.; Moreno, A. J.; Carvalho, R. A.; Oliveira, P. J. Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev. 2014, 34 (1), 106−135. (41) Kratz, F.; Beyer, U.; Roth, T.; Tarasova, N.; Collery, P.; Lechenault, F.; Cazabat, A.; Schumacher, P.; Unger, C.; Falken, U. Transferrin conjugates of doxorubicin: Synthesis, characterization, cellular uptake, and in vitro efficacy. J. Pharm. Sci. 1998, 87 (3), 338− 346. (42) Rollas, S.; Kücu̧ ̈kgüzel, Ş. Hydrazone, amide, carbamate, macromolecular and other prodrugs of doxorubicin. Open Drug Delivery J. 2008, 2 (1), 77−85. (43) Graeser, R.; Esser, N.; Unger, H.; Fichtner, I.; Zhu, A.; Unger, C.; Kratz, F. INNO-206, the (6-maleimidocaproyl hydrazone derivative of doxorubicin), shows superior antitumor efficacy compared to doxorubicin in different tumor xenograft models and in an orthotopic pancreas carcinoma model. Invest. New Drugs 2010, 28 (1), 14−19. (44) Krüger, M.; Beyer, U.; Schumacher, P.; Unger, C.; Zahn, H.; Kratz, F. Synthesis and stability of four maleimide derivatives of the anticancer drug doxorubicin for the preparation of chemoimmunoconjugates. Chem. Pharm. Bull. 1997, 45, 399−401. (45) Effenberger, K.; Breyer, S.; Ocker, M.; Schobert, R. New doxorubicin N-acyl hydrazones with improved efficacy and cell line specificity show modes of action different from the parent drug. Int. J. Clin. Pharmacol. Ther. 2010, 48 (7), 485−486. (46) Frézard, F.; Garnier-Suillerot, A. Permeability of lipid bilayer to anthracycline derivatives. Role of the bilayer composition and of the temperature. Biochim. Biophys. Acta, Lipids Lipid Metab. 1998, 1389 (1), 13−22. (47) Petralito, S.; Spera, R.; Memoli, A.; D’Inzeo, G.; Liberti, M.; Apollonio, F. Preparation and characterization of lipid vesicles entrapping iron oxide nanoparticles. Asia-Pac. J. Chem. Eng. 2012, 7 (S3), S335−S341. (48) Jain, T.; Morales, M.; Sahoo, S.; Leslie-Pelecky, D.; Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharmaceutics 2005, 2 (3), 194−205. (49) Xu, Y.; Szoka, F. C., Jr. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996, 35 (18), 5616−5623.

G

DOI: 10.1021/la504830z Langmuir XXXX, XXX, XXX−XXX

Magnetic nanoparticle-supported lipid bilayers for drug delivery.

Magnetic nanoparticle-supported lipid bilayers (SLBs) constructed around core-shell Fe3O4-SiO2 nanoparticles (SNPs) were prepared and evaluated as pot...
3MB Sizes 0 Downloads 11 Views