Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 978754, 3 pages http://dx.doi.org/10.1155/2013/978754

Research Article On the Stability of One-Dimensional Wave Equation Soon-Mo Jung Mathematics Section, College of Science and Technology, Hongik University, Sejong 339-701, Republic of Korea Correspondence should be addressed to Soon-Mo Jung; [email protected] Received 5 August 2013; Accepted 16 September 2013 Academic Editors: K. Ammari, I. Canak, and M. M. Cavalcanti Copyright Β© 2013 Soon-Mo Jung. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We prove the generalized Hyers-Ulam stability of the one-dimensional wave equation, 𝑒𝑑𝑑 = 𝑐2 𝑒π‘₯π‘₯ , in a class of twice continuously differentiable functions.

1. Introduction In 1940, Ulam [1] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms: Let 𝐺1 be a group and let 𝐺2 be a metric group with the metric 𝑑(β‹…, β‹…). Given πœ€ > 0, does there exist a 𝛿 > 0 such that if a function β„Ž : 𝐺1 β†’ 𝐺2 satisfies the inequality 𝑑(β„Ž(π‘₯𝑦), β„Ž(π‘₯)β„Ž(𝑦)) < 𝛿, for all π‘₯, 𝑦 ∈ 𝐺1 , then there exists a homomorphism 𝐻 : 𝐺1 β†’ 𝐺2 with 𝑑(β„Ž(π‘₯), 𝐻(π‘₯)) < πœ€, for all π‘₯ ∈ 𝐺1 ? The case of approximately additive functions was solved by Hyers [2] under the assumption that 𝐺1 and 𝐺2 are Banach spaces. Indeed, he proved that each solution of the inequality ‖𝑓(π‘₯ + 𝑦) βˆ’ 𝑓(π‘₯) βˆ’ 𝑓(𝑦)β€– ≀ πœ€, for all π‘₯ and 𝑦, can be approximated by an exact solution, say an additive function. In this case, the Cauchy additive functional equation, 𝑓(π‘₯ + 𝑦) = 𝑓(π‘₯) + 𝑓(𝑦), is said to have the Hyers-Ulam stability. Rassias [3] attempted to weaken the condition for the bound of the norm of the Cauchy difference as follows: σ΅„© 󡄩𝑝 σ΅„© σ΅„©σ΅„© 𝑝 (1) 󡄩󡄩𝑓 (π‘₯ + 𝑦) βˆ’ 𝑓 (π‘₯) βˆ’ 𝑓 (𝑦)σ΅„©σ΅„©σ΅„© ≀ πœ€ (β€–π‘₯β€– + 󡄩󡄩󡄩𝑦󡄩󡄩󡄩 ) and proved Hyers’ theorem. That is, Rassias proved the generalized Hyers-Ulam stability (or Hyers-Ulam-Rassias stability) of the Cauchy additive functional equation. Since then, the stability of several functional equations has been extensively investigated [4–9].

The terminologies, the generalized Hyers-Ulam stability, and the Hyers-Ulam stability can also be applied to the case of other functional equations, differential equations, and various integral equations. Given a real number 𝑐 > 0, the partial differential equation 𝑒𝑑𝑑 (π‘₯, 𝑑) βˆ’ 𝑐2 𝑒π‘₯π‘₯ (π‘₯, 𝑑) = 0

(2)

is called the (one-dimensional) wave equation, where 𝑒𝑑𝑑 (π‘₯, 𝑑) and 𝑒π‘₯π‘₯ (π‘₯, 𝑑) denote the second time derivative and the second space derivative of 𝑒(π‘₯, 𝑑), respectively. Let πœ‘ : R Γ— R β†’ [0, ∞) be a function. If, for each twice continuously differentiable function 𝑒 : R Γ— R β†’ C satisfying 󡄨 󡄨󡄨 󡄨󡄨𝑒𝑑𝑑 (π‘₯, 𝑑) βˆ’ 𝑐2 𝑒π‘₯π‘₯ (π‘₯, 𝑑)󡄨󡄨󡄨 ≀ πœ‘ (π‘₯, 𝑑) 󡄨 󡄨

(π‘₯, 𝑑 ∈ R) ,

(3)

there exist a solution 𝑒0 : R Γ— R β†’ C of the (one-dimensional) wave equation (2) and a function Ξ¦ : RΓ—R β†’ [0, ∞) such that 󡄨 󡄨󡄨 󡄨󡄨𝑒 (π‘₯, 𝑑) βˆ’ 𝑒0 (π‘₯, 𝑑)󡄨󡄨󡄨 ≀ Ξ¦ (π‘₯, 𝑑)

(π‘₯, 𝑑 ∈ R) ,

(4)

where Ξ¦(π‘₯, 𝑑) is independent of 𝑒(π‘₯, 𝑑) and 𝑒0 (π‘₯, 𝑑), then we say that the wave equation (2) has the generalized HyersUlam stability (or the Hyers-Ulam-Rassias stability). In this paper, using an idea from [10], we prove the generalized Hyers-Ulam stability of the (one-dimensional) wave equation (2).

2

The Scientific World Journal for any π‘₯, 𝑑 ∈ R. Thus, it follows from inequality (6) that

2. Generalized Hyers-Ulam Stability In the following theorem, using the d’Alembert method (method of characteristic coordinates), we prove the generalized Hyers-Ulam stability of the (one-dimensional) wave equation (2). Theorem 1. Let a function πœ‘ : R Γ— R β†’ [0, ∞) be given such that the double integral 𝑏

π‘Ž

0

0

∫ ∫ πœ‘(

πœ‡+] πœ‡βˆ’] ) π‘‘πœ‡π‘‘] , 2 2𝑐

(5)

1 𝑀+𝑧 π‘€βˆ’π‘§ 󡄨 󡄨󡄨 , ), 󡄨󡄨V𝑀𝑧 (𝑀, 𝑧)󡄨󡄨󡄨 ≀ 2 πœ‘ ( 4𝑐 2 2𝑐 for any 𝑀, 𝑧 ∈ R. Therefore, we get βˆ’

πœ‡+] πœ‡βˆ’] 1 𝑧 𝑀 , ) π‘‘πœ‡π‘‘] ∫ ∫ πœ‘( 4𝑐2 0 0 2 2𝑐

󡄨 󡄨󡄨 󡄨󡄨𝑒 (π‘₯, 𝑑) βˆ’ 𝑒0 (π‘₯, 𝑑)󡄨󡄨󡄨 ≀

1 4𝑐2

(7)

for all π‘₯, 𝑑 ∈ R.

V (𝑀, 𝑧) := 𝑒 (

𝑀+𝑧 π‘€βˆ’π‘§ , ). 2 2𝑐

(8)

If we set 𝑀 = π‘₯ + 𝑐𝑑 and 𝑧 = π‘₯ βˆ’ 𝑐𝑑, then we have 𝑒(π‘₯, 𝑑) = V(𝑀, 𝑧) and πœ•π‘€ πœ•π‘§ + V𝑧 (𝑀, 𝑧) 𝑒𝑑 (π‘₯, 𝑑) = V𝑀 (𝑀, 𝑧) πœ•π‘‘ πœ•π‘‘

(12)

πœ‡+] πœ‡βˆ’] 1 𝑧 𝑀 , ) π‘‘πœ‡π‘‘] ∫ ∫ πœ‘( 2 4𝑐 0 0 2 2𝑐

or equivalently

πœ•π‘€ πœ•π‘§ βˆ’ 𝑐V𝑧𝑧 (𝑀, 𝑧) πœ•π‘‘ πœ•π‘‘

= 𝑐2 V𝑀𝑀 (𝑀, 𝑧) βˆ’ 2𝑐2 V𝑀𝑧 (𝑀, 𝑧) + 𝑐2 V𝑧𝑧 (𝑀, 𝑧) , πœ•π‘€ πœ•π‘§ 𝑒π‘₯ (π‘₯, 𝑑) = V𝑀 (𝑀, 𝑧) + V𝑧 (𝑀, 𝑧) πœ•π‘₯ πœ•π‘₯

(9)

1 4𝑐2

󡄨󡄨 𝑧 𝑀 󡄨󡄨 πœ‡+] πœ‡βˆ’] 󡄨󡄨 󡄨 , ) π‘‘πœ‡π‘‘]󡄨󡄨󡄨 , σ΅„¨σ΅„¨βˆ« ∫ πœ‘ ( 󡄨󡄨 2 2𝑐 󡄨󡄨 0 0

V (𝑀, 𝑧) = 𝑒 (

𝑀+𝑧 π‘€βˆ’π‘§ , ), 2 2𝑐

(13)

𝑧 𝑧 V (0, 𝑧) = 𝑒 ( , βˆ’ ) , 2 2𝑐

𝑀 𝑀 V (𝑀, 0) = 𝑒 ( , ) , 2 2𝑐 V (0, 0) = 𝑒 (0, 0) . (14)

for all 𝑀, 𝑧 ∈ R. If we set 𝑀 = π‘₯ + 𝑐𝑑 and 𝑧 = π‘₯ βˆ’ 𝑐𝑑 in the last inequality, then we obtain 󡄨󡄨 󡄨 󡄨󡄨𝑒 (π‘₯, 𝑑) βˆ’ 𝑒0 (π‘₯, 𝑑)󡄨󡄨󡄨 󡄨󡄨 πœ‡+] πœ‡βˆ’] 1 󡄨󡄨󡄨 π‘₯βˆ’π‘π‘‘ π‘₯+𝑐𝑑 󡄨 ≀ 2 σ΅„¨σ΅„¨σ΅„¨βˆ« πœ‘( , ) π‘‘πœ‡π‘‘]󡄨󡄨󡄨 , ∫ 󡄨󡄨 4𝑐 󡄨󡄨 0 2 2𝑐 0

= V𝑀 (𝑀, 𝑧) + V𝑧 (𝑀, 𝑧) , πœ•π‘€ πœ•π‘§ + V𝑀𝑧 (𝑀, 𝑧) πœ•π‘₯ πœ•π‘₯ πœ•π‘€ πœ•π‘§ + V𝑧𝑧 (𝑀, 𝑧) πœ•π‘₯ πœ•π‘₯

(16)

for all π‘₯, 𝑑 ∈ R, where we set

= V𝑀𝑀 (𝑀, 𝑧) + 2V𝑀𝑧 (𝑀, 𝑧) + V𝑧𝑧 (𝑀, 𝑧) ,

𝑒0 (π‘₯, 𝑑) := 𝑒 (

for all π‘₯, 𝑑 ∈ R. Hence, we have 𝑒𝑑𝑑 (π‘₯, 𝑑) βˆ’ 𝑐2 𝑒π‘₯π‘₯ (π‘₯, 𝑑) = βˆ’4𝑐2 V𝑀𝑧 (𝑀, 𝑧) ,

≀

󡄨󡄨 𝑀 + 𝑧 𝑀 βˆ’ 𝑧 󡄨󡄨 𝑀 𝑀 𝑧 𝑧 󡄨󡄨𝑒 ( , ) βˆ’ 𝑒 ( , ) βˆ’ 𝑒 ( , βˆ’ ) + 𝑒 (0, 0)󡄨󡄨󡄨󡄨 󡄨󡄨 2 2𝑐 2 2𝑐 2 2𝑐 󡄨 󡄨 󡄨 󡄨 𝑧 𝑀 󡄨󡄨 πœ‡+] πœ‡βˆ’] 1 󡄨󡄨 ≀ 2 σ΅„¨σ΅„¨σ΅„¨βˆ« ∫ πœ‘ ( , ) π‘‘πœ‡π‘‘]󡄨󡄨󡄨 , 󡄨 󡄨󡄨 4𝑐 󡄨 0 0 2 2𝑐 (15)

πœ•π‘€ πœ•π‘§ + 𝑐V𝑀𝑧 (𝑀, 𝑧) πœ•π‘‘ πœ•π‘‘

+ V𝑧𝑀 (𝑀, 𝑧)

0

Hence, it follows from (13) and the last equalities that

= 𝑐V𝑀 (𝑀, 𝑧) βˆ’ 𝑐V𝑧 (𝑀, 𝑧) ,

𝑒π‘₯π‘₯ (π‘₯, 𝑑) = V𝑀𝑀 (𝑀, 𝑧)

0

for all 𝑀, 𝑧 ∈ R. On account of (8), we get

Proof. Let us define a function V : R Γ— R β†’ C by

βˆ’ 𝑐V𝑧𝑀 (𝑀, 𝑧)

𝑀

|V (𝑀, 𝑧) βˆ’ V (𝑀, 0) βˆ’ V (0, 𝑧) + V (0, 0)|

󡄨󡄨 π‘₯βˆ’π‘π‘‘ π‘₯+𝑐𝑑 󡄨󡄨 πœ‡+] πœ‡βˆ’] 󡄨󡄨 󡄨 πœ‘( , ) π‘‘πœ‡π‘‘]󡄨󡄨󡄨 ∫ σ΅„¨σ΅„¨βˆ« 󡄨󡄨 0 󡄨󡄨 2 2𝑐 0

𝑒𝑑𝑑 (π‘₯, 𝑑) = 𝑐V𝑀𝑀 (𝑀, 𝑧)

≀

(6)

for all π‘₯, 𝑑 ∈ R, then there exists a solution 𝑒0 : R Γ— R β†’ C of the wave equation (2) which satisfies

𝑧

≀ ∫ ∫ V𝑀𝑧 (πœ‡, ]) π‘‘πœ‡π‘‘]

exists for all π‘Ž, 𝑏 ∈ R. If a twice continuously differentiable function 𝑒 : R Γ— R β†’ C satisfies the inequality 󡄨 󡄨󡄨 󡄨󡄨𝑒𝑑𝑑 (π‘₯, 𝑑) βˆ’ 𝑐2 𝑒π‘₯π‘₯ (π‘₯, 𝑑)󡄨󡄨󡄨 ≀ πœ‘ (π‘₯, 𝑑) 󡄨 󡄨

(11)

(10)

π‘₯ 𝑐 π‘₯ 𝑑 + 𝑑, + ) 2 2 2𝑐 2

π‘₯ 𝑑 π‘₯ 𝑐 + 𝑒 ( βˆ’ 𝑑, βˆ’ + ) βˆ’ 𝑒 (0, 0) . 2 2 2𝑐 2

(17)

The Scientific World Journal

3

By some tedious calculations, we get

Proof. Since 󡄨󡄨 𝑏 π‘Ž 󡄨󡄨 πœ‡+] πœ‡βˆ’] 󡄨󡄨 󡄨󡄨 σ΅„¨σ΅„¨βˆ« ∫ πœ‘ ( 󡄨󡄨 , ) π‘‘πœ‡π‘‘] 󡄨󡄨 0 0 󡄨󡄨 2 2𝑐 󡄨 󡄨

πœ• 𝑒 (π‘₯, 𝑑) πœ•π‘‘ 0 𝑐 π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 𝑑 1 𝑑 = 𝑒π‘₯ ( + , + ) + 𝑒𝑑 ( + , + ) 2 2 2 2𝑐 2 2 2 2 2𝑐 2 π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 𝑐 𝑑 1 𝑑 βˆ’ 𝑒π‘₯ ( βˆ’ , βˆ’ + ) + 𝑒𝑑 ( βˆ’ , βˆ’ + ) , 2 2 2 2𝑐 2 2 2 2 2𝑐 2 πœ•2 𝑒 (π‘₯, 𝑑) πœ•π‘‘2 0 =

𝑐2 π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 𝑑 𝑐 𝑑 𝑒π‘₯π‘₯ ( + , + ) + 𝑒π‘₯𝑑 ( + , + ) 4 2 2 2𝑐 2 2 2 2 2𝑐 2

1 π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 𝑑 𝑐2 𝑑 + 𝑒𝑑𝑑 ( + , + ) + 𝑒π‘₯π‘₯ ( βˆ’ , βˆ’ + ) 4 2 2 2𝑐 2 4 2 2 2𝑐 2 π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 𝑐 𝑑 1 𝑑 βˆ’ 𝑒π‘₯𝑑 ( βˆ’ , βˆ’ + ) + 𝑒𝑑𝑑 ( βˆ’ , βˆ’ + ) , 2 2 2 2𝑐 2 4 2 2 2𝑐 2 πœ• 𝑒 (π‘₯, 𝑑) πœ•π‘₯ 0

π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 1 𝑑 1 𝑑 + 𝑒π‘₯ ( βˆ’ , βˆ’ + ) βˆ’ 𝑒𝑑 ( βˆ’ , βˆ’ + ) , 2 2 2 2𝑐 2 2𝑐 2 2 2𝑐 2 πœ•2 𝑒 (π‘₯, 𝑑) πœ•π‘₯2 0 1 π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 𝑑 1 𝑑 = 𝑒π‘₯π‘₯ ( + , + ) + 𝑒π‘₯𝑑 ( + , + ) 4 2 2 2𝑐 2 2𝑐 2 2 2𝑐 2 π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 1 𝑑 1 𝑑 𝑒 ( + , + ) + 𝑒π‘₯π‘₯ ( βˆ’ , βˆ’ + ) 4𝑐2 𝑑𝑑 2 2 2𝑐 2 4 2 2 2𝑐 2

βˆ’

π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 1 𝑑 1 𝑑 𝑒π‘₯𝑑 ( βˆ’ , βˆ’ + )+ 2 𝑒𝑑𝑑 ( βˆ’ , βˆ’ + ) , 2𝑐 2 2 2𝑐 2 4𝑐 2 2 2𝑐 2 (18)

for all π‘₯, 𝑑 ∈ R. Hence, we know that πœ•2 πœ•2 (19) 𝑒0 (π‘₯, 𝑑) βˆ’ 𝑐2 2 𝑒0 (π‘₯, 𝑑) = 0, 2 πœ•π‘‘ πœ•π‘₯ for any π‘₯, 𝑑 ∈ R; that is, 𝑒0 (π‘₯, 𝑑) is a solution of the wave equation (2). Corollary 2. Given a constant 𝛼 > 0, let a function πœ‘ : R Γ— R β†’ [0, ∞) be given as 2 2

(20)

If a twice continuously differentiable function 𝑒 : R Γ— R β†’ C satisfies inequality (6), for all π‘₯, 𝑑 ∈ R, then there exists a solution 𝑒0 : R Γ— R β†’ C of the wave equation (2) which satisfies 󡄨 π‘₯ βˆ’ 𝑐𝑑 π‘₯ + 𝑐𝑑 󡄨󡄨󡄨󡄨 󡄨 π›Όπœ‹ 󡄨󡄨 󡄨󡄨 ) erf ( )󡄨 , 󡄨󡄨𝑒 (π‘₯, 𝑑) βˆ’ 𝑒0 (π‘₯, 𝑑)󡄨󡄨󡄨 ≀ 2 󡄨󡄨󡄨erf ( √2 √2 󡄨󡄨󡄨 8𝑐 󡄨󡄨 (21) for all π‘₯, 𝑑 ∈ R.

Conflict of Interests

Acknowledgments This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2013R1A1A2005557).

References

+

2

for all π‘Ž, 𝑏 ∈ R, in view of Theorem 1, we conclude that the statement of this corollary is true.

The author declares that there is no conflict of interests regarding the publication of this paper.

1 π‘₯ 𝑐𝑑 π‘₯ π‘₯ 𝑐𝑑 π‘₯ 𝑑 1 𝑑 = 𝑒π‘₯ ( + , + ) + 𝑒𝑑 ( + , + ) 2 2 2 2𝑐 2 2𝑐 2 2 2𝑐 2

πœ‘ (π‘₯, 𝑑) = π›Όπ‘’βˆ’π‘₯ βˆ’π‘ 𝑑 .

󡄨󡄨 𝑏 π‘Ž 󡄨󡄨 2 2 󡄨 󡄨 = σ΅„¨σ΅„¨σ΅„¨σ΅„¨βˆ« ∫ π›Όπ‘’βˆ’πœ‡ /2βˆ’] /2 π‘‘πœ‡π‘‘]󡄨󡄨󡄨󡄨 󡄨󡄨 0 0 󡄨󡄨 󡄨󡄨 𝑏 2 󡄨󡄨 󡄨󡄨 π‘Ž 2 󡄨󡄨 󡄨 󡄨󡄨 󡄨 = 𝛼 σ΅„¨σ΅„¨σ΅„¨σ΅„¨βˆ« π‘’βˆ’] /2 𝑑]󡄨󡄨󡄨󡄨 σ΅„¨σ΅„¨σ΅„¨βˆ« π‘’βˆ’πœ‡ /2 π‘‘πœ‡σ΅„¨σ΅„¨σ΅„¨ (22) 󡄨󡄨 󡄨󡄨 0 󡄨󡄨 󡄨󡄨 0 󡄨󡄨 󡄨 󡄨󡄨 πœ‹ 󡄨󡄨󡄨󡄨 2 𝑏/√2 βˆ’]2 2 π‘Ž/√2 βˆ’πœ‡2 = 2𝛼 󡄨󡄨( 𝑒 𝑑]) ( 𝑒 π‘‘πœ‡)󡄨󡄨󡄨 ∫ ∫ 󡄨󡄨 βˆšπœ‹ 0 4 󡄨󡄨󡄨 βˆšπœ‹ 0 󡄨 󡄨 󡄨 󡄨 󡄨 π›Όπœ‹ 󡄨󡄨 𝑏 π‘Ž 󡄨 = 󡄨erf ( ) erf ( )󡄨󡄨󡄨 < ∞, √2 √2 󡄨󡄨 2 󡄨󡄨󡄨

[1] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, NY, USA, 1960. [2] D. H. Hyers, β€œOn the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of USA, vol. 27, pp. 222–224, 1941. [3] T. M. Rassias, β€œOn the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, pp. 297–300, 1978. [4] G. L. Forti, β€œHyers-Ulam stability of functional equations in several variables,” Aequationes Mathematicae, vol. 50, no. 1-2, pp. 143–190, 1995. [5] P. G˘avrut˘a, β€œA generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436, 1994. [6] D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations of Several Variables, Birkhauser, Boston, Mass, USA, 1998. [7] D. H. Hyers and T. M. Rassias, β€œApproximate homomorphisms,” Aequationes Mathematicae, vol. 44, no. 2-3, pp. 125–153, 1992. [8] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications, Springer, New York, NY, USA, 2011. [9] T. M. Rassias, β€œOn the stability of functional equations and a problem of Ulam,” Acta Applicandae Mathematicae, vol. 62, no. 1, pp. 23–130, 2000. [10] B. Hegyi and S.-M. Jung, β€œOn the stability of Laplace’s equation,” Applied Mathematics Letters, vol. 26, pp. 549–552, 2013.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

On the stability of one-dimensional wave equation.

We prove the generalized Hyers-Ulam stability of the one-dimensional wave equation, u(tt) = c(2)u(xx), in a class of twice continuously differentiable...
2MB Sizes 0 Downloads 0 Views