Plant Cell Reports (1984) 3:81-84

Plant Cell Reports

© Springer-Verlag 1984

Polynucleotide phosphorylase from plant cells Eva Schumacher-Wittkopf, Gerhard Richter, and Sabine Schulze Institut ft~r Botanik der Universitfit Hannover, Herrenh/~user StraBe 2, D-3000 Hannover, Federal Republic of Germany Received July 8, 1983/Revised version received March 21, 1984 - Communicated by H. Kleinig

Abstract

Materials

T h e i s o l a t i o n of p o l y n u c l e o t i d e p h o s p h o r y l a s e (EC 2 . 7 • 7 . 8 ) f r o m s u s p e n s i o n c u l t u r e d p l a n t c e l l s of p a r s l e y ( P e t r o s e l i n u m sativum) a n d from tomato seedlings (Lycopersicon esculentum) is d e s c r i b e d . T h e p r o c e d u r e i n c l u d e s an ultracentrifugation step, a g l y c e r o l d e n s i t y g r a d i e n t c e n t r i f u g a t i o n a n d p r e p a r a t i v e gel electrophoresis under nondenaturing conditions. I s o e l e c t r i c f o c u s i n g g i v e s r i s e to a m a j o r c o m p o n e n t ( p I ~ 7.5) a n d to a m i n o r o n e (pI ~ 5). T h e e n z y m e c o n t a i n s f i v e s u b u n i t s w i t h a p p a r e n t M r v a l u e s of 160 000, 140 OO0, 70 OOO, 34 0 0 0 a n d 12 000, the 70 O O O - d a l t o n one being a glycoprotein.

Plant Material. Freely suspended callus cells o r i g i n a t i n g f r o m r o o t e x p l a n t s of P e t r o s e l i h u m s a t i v u m (parsley) w e r e g r o w n at 27oc u n d e r s t e r i l e c o n d i t i o n s in a s y n t h e t i c m e d i u m ( R i c h t e r a n d S e i t z 1970). The s u s p e n s i o n w a s a e r a t e d w i t h s t e r i l e air. T h e c e l l s w e r e h a r v e s t e d in the l o g a r i t h m i c g r o w t h p h a s e , f r o z e n i m m e d i a t e l y w i t h l i q u i d n i t r o g e n , and s t o r e d at -20oc. G r e e n s e e d l i n g s of t o m a t o (Lycopersicon esculentum "Moneymaker") were r a i s e d in a g r e e n h o u s e for 8-14 d at 1 8 - 2 5 o c in c o n s t a n t light.

Introduction Polynucleotide phosphorylase (polyribonucleotide ribonucleotidyl t r a n s f e r a s e , EC 2 . 7 . 7 • 8 ; P N P a s e ) c a t a l y z e s in v i t r o the p o l y m e r i z a t i o n of n u c l e o s i d e d i p h o s p h a t e s de n o v o or b y e l o n g a t i o n of a p r i m e r as w e l l as the p h o s p h o r o l y t i c c l e a v a g e of r i b o p o l y n u c l e o t i d e s . A l t h o u g h P N P a s e h a d b e e n d i s c o v e r e d 25 y e a r s ago, the p h y s i o l o g i c a l r o l e of this e n z y m e is still unknown. It is t y p i c a l l y f o u n d in p r o k a r y o t i c o r g a n i s m s , i.e. in b a c t e r i a ( G o d e f r o y - C o l b u r n and Grunberg-Manago 1972) a n d in c y a n o b a c t e r i a ( N o l d e n a n d R i c h t e r 1982). In c o n t r a s t to the w e a l t h of i n f o r m a t i o n on P N P a s e of t h e s e organismsjrelatively l i t t l e is k n o w n a b o u t the e x i s t e n c e a n d the p r o p e r t i e s of s u c h an enzyme in e u k a r y o t i c o r g a n i s m s . T h e r e h a v e b e e n a f e w r e p o r t s on b o t h s o l u b l e a n d m e m b r a n e b o u n d a c t i v i t i e s of P N P a s e in a n i m a l c e l l s (Godefroy-Colburn and Grunberg-Manago 1972) a n d in v a r i o u s p l a n t t i s s u e s ( B r u m m o n d et al. ]957; K e s s l e r a n d C h e n 1964; B r i s h a m m a r a n d J u n t t i 1974), b u t the e n z y m e has n e v e r b e e n p u r i f i e d a n d c h a r a c t e r i z e d on the m o l e c u l a r level. T h o s e a t t e m p t s w e r e h a m p e r e d b y the s m a l l q u a n t i t i e s of e n z y m e a c t i v i t y p r e s e n t a n d b y its i n s t a b i l i t y in d i l u t e s o l u t i o n s • T h e a i m of the p r e s e n t i n v e s t i g a t i o n s w a s to e s t a b l i s h the e x i s t e n c e of P N P a s e in h i g h e r p l a n t s a n d to e l u c i d a t e the m o l e c u l a r s t r u c t u r e of the e n z y m e .

and Methods

E n z y m e e x t r a c t i o n • 2 5 0 - g p o r t i o n s of f r o z e n p a r s l e y c e l l s w e r e s u s p e n d e d in an e q u a l v o l u m e of b u f f e r (0.2 M T r i s - H C l pH 8.5, 0 . 0 3 M M g C I 2, 0 . 0 6 M KC1, 0 . 2 M s u c r o s e , 0.14 mM phenylmethylsulfonylfluoride) and b l e n d e d for 3 x I m i n at full s p e e d in a Waring-type mixer. The resulting brei was g r o u n d in a m o t o r - d r i v e n t e f l o n - g l a s s h o m o g e n i z e r (3 x for 2 min) . T r i t o n X 100 w a s a d d e d to a f i n a l c o n c e n t r a t i o n of 2%. A f t e r i n c u b a t i o n for 15 m i n at O - 4 o c w i t h g e n t l e s t i r r i n g the s u s p e n s i o n w a s c e n t r i f u g e d at 30 0 O O • g for 5 m i n at OoC. T h e y e l l o w i s h - b r o w n sup e r n a t a n t w a s f i l t e r e d t h r o u g h two l a y e r s of 40 p m n y l o n cloth• A l i q u o t s of the f i l t r a t e (21 ml) w e r e a p p l i e d to the top of a 1.5 M s u c r o s e c u s h i o n (4 ml) f o r m e d in 0 . 0 4 M T r i s - H C l pH 8.5, O.01 M M g C I 2 , 0 . 0 2 M KC1. A f t e r c e n t r i f u g a t i o n for 150 m i n at 100 O O O g in a B e c k m a n 50.2 Ti r o t o r at O O C the p e l let w a s r e s u s p e n d e d in a m e d i u m c o n t a i n i n g 0 . 0 2 M T r i s - H C 1 p H 8.0, O.O1 M M g C I 2 , O.1 M KCI, 0 . 0 5 M E D T A , and d i a l y z e d o v e r n i g h t a g a i n s t 5 1 of T r i s - g l y c e r o l b u f f e r (TGb u f f e r ; 0 . 0 5 M T r i s - H C l pH 8.0, 0 . 0 5 M EDTA, 20% g l y c e r o l v/v) . T h e n T r i t o n X 100 w a s add e d to g i v e a t o t a l of O . 1 % v/v, a n d the l y s a t e c e n t r i f u g e d for 15 m i n a t 30 O O O • g a n d OoC. T h e s u p e r n a t a n t (= f r a c t i o n "PM") s e r v e d as s t a r t i n g m a t e r i a l for s u b s e q u e n t p u r i f i c a t i o n steps. F r o m t o m a t o s e e d l i n g s 150 - 200 g s h o o t tips were harvested, chilled, roughly chopped and h o m o g e n i z e d in p o r t i o n s as d e s c r i b e d for the c u l t u r e d cells, e x c e p t : b l e n d i n g w a s for 2 x 20 s at m e d i u m s p e e d f o l l o w e d b y 3 x 10 s at h i g h speed; the r e s u l t i n g b r e i w a s p a s s e d t h r o u g h two l a y e r s of 40 p m n y l o n c l o t h

82 before

addition

of T r i t o n

X 100.

E n z y m e assay. P N P a s e a c t i v i t y w a s a s s a y e d m e a s u r i n g the i n c o r p o r a t i o n of 1 4 C - l a b e l l e d ADP into ribopolynucleotide as d e s c r i b e d ( N o l d e n a n d R i c h t e r 1982). O n e u n i t of the e n z y m e c a t a l y z e s the i n c o r p o r a t i o n of I n m o l AMP into ribopolynucleotide at 37Oc in I min. P N P a s e e n r i c h e d in a p o l y a c r y l a m i d e g e l w a s l o c a t e d b y i n c u b a t i n g the l a t t e r in 2 m l of the t e s t m i x t u r e for at l e a s t 12 h at 37oc; the s u b s e q u e n t d e t e r m i n a t i o n of r a d i o a c t i v i t y i n c o r p o r a t e d has b e e n p u b l i s h e d e l s e w h e r e ( R i c h t e r 1973). A l t e r n a t i v e l y , the r i b o p o l y nucleotide formed was stained with acridine o r a n g e (30 p g / m l ) in d a r k n e s s . Protein determination. Protein content was d e t e r m i n e d b y a m o d i f i c a t i o n of the L o w r y p r o c e d u r e in a f i n a l v o l u m e of 0.5 m l ( S c h a c t e r l e a n d P o l l a c k ]973) a f t e r p r e c i p i t a t i o n w i t h 10% p e r c h l o r i c acid. Glycerol density gradient centrifugation. A l i q u o t s of 0.5 m l of f r a c t i o n "PM" c o n t a i n ing a b o u t 5 m g p r o t e i n w e r e l a y e r e d o n t o a 12 m l g r a d i e n t of 1 5 - 3 0 % (v/v) g l y c e r o l in 0 . 0 5 M T r i s - H C l pH 8.0 a n d 0.5 ~ 4 EDTA. C e n t r i f u g a t i o n w a s in a S p i n c o SW 40 r o t o r at 140 O O O • g for 4 h at 4oc. F r a c t i o n s of I m l w e r e c o l l e c t e d b y p u n c t u r i n g the b o t t o m of the tube, a n d e a c h o n e a s s a y e d for P N P a s e activity and protein, I s o e l e c t r i c f o c u s i n g w a s p e r f o r m e d on gel s l a b s of S e p h a d e x G 75 " s u p e r f i n e " w i t h L K B ampholines (pH 3.5-10) as r e c o m m e n d e d b y the m a n u f a c t u r e r s . F o r d e t e r m i n a t i o n of P N P a s e on the i s o e l e c t r o f o c u s i n g p l a t e s a p p r o p r i a t e s t r i p s w e r e s l i c e d i n t o s e g m e n t s of I c m w h i c h w e r e h o m o g e n i z e d in TG b u f f e r and c e n t r i f u g e d for 10 m i n at 5 O 0 0 • g; the a c t i v i ty w a s a s s a y e d in the s u p e r n a t a n t . P o l y a c r y l a m i d e gel e l e c t r o p h o r e s i s . C r u d e a n d purified enzyme preparations were analyzed electrophoretically in the p r e s e n c e of SDS as d e s c r i b e d b y L ~ m m l i (1970). P r o t e i n s w e r e stained with Coomassie brilliant blue R-250. S e p a r a t i o n b y d i s c e l e c t r o p h o r e s i s in n a t i v e c o n d i t i o n s w a s p e r f o r m e d in p o l y a c r y l a m i d e t u b e g e l s w i t h l a r g e p o r e size. C a r b o h y d r a t e s on the g e l s w e r e s t a i n e d b y e i t h e r the p e r i o d a t e - S e h ~ f f or the d a n s y l h y d r a z i n e - p e r i o d a t e m e t h o d ( E c k h a r d et al. 1976).

t o m a t o w h i c h c o n t a i n e d the b u l k of P N P a s e a c t i v i t y (= f r a c t i o n "PM"). F u r t h e r o u r i f i c a t i o n w a s a c h i e v e d b y c e n t r i f u g a t i o n of the s o l u b i l i z e d f r a c t i o n "PM" t h r o u g h a g l y c e r o l d e n s i t y g r a d i e n t . M o s t of the P N P a s e a c t i v i t y a c c u m u l a t e d n e a r the b o t t o m . I s o e l e c t r i c foc u s i n g of this m a t e r i a l (= f r a c t i o n "GG") g a v e r i s e to t w o p r o t e i n b a n d s w i t h P N P a s e a c t i v i t y r e p r e s e n t i n g a m i n o r c o m p o n e n t of pI W 5 a n d a m a j o r one of pI ~ 7 . 5 (Fig. I). A s u m m a r y s h e e t of P N P a s e p u r i f i c a t i o n f r o m t o m a t o s e e d l i n g s is g i v e n in T a b l e I. T h e data compare well with those obtained from p r e p a r a t i o n s of p a r s l e y cells. Table i. Purification of polynucleotide phosphorylase from tomato seedlings Fraction

Total protein (rag)

Crude extract

18 OOO

Polysome/ membrane lysate (fraction "PM")

Total activity (units) a

7O

Glycerol gradient 0.5 (fraction "GG") Isoelectric focusing pI ~ 5.0 pI ~7.5

O.21 O.18

43.6

2.4 x 10 -3

40.4

0.57

2.1

4.2

1.1 2.5

5.2 13.8

aNanomoles of AMP incorporated in ribopolynucleotide per min

-~ 18 0_ < E14



C~

.> U

Results P u r i f i c a t i o n of P N P a s e f r o m p a r s l e y c e l l c u l tures and tomato seedlings with conventional techniques which give positive results with the c o r r e s p o n d i n g e n z y m e f r o m p r o k a r y o t i c o r g a n i s m s , e.g. c y a n o b a c t e r i a (Nolden a n d R i c h t e r 1982) w a s u n s u c c e s s f u l d u e to the ins t a b i l i t y of the e n z y m e p r o t e i n . In the p r e s e n c e of ( N H 4 ) 2 S O 4 a m a r k e d loss in a c t i v i t y occurred; separation by column chromatography (OEAE-cellulose, poly (U)-Sepharose, Sephadex) g a v e r i s e to a v a r y i n g n u m b e r of a c t i vity peaks with patterns hardly reproducible. T h e s e f i n d i n g s c o n t r a d i c t the o b s e r v a t i o n s of the P N P a s e a c t i v i t y f r o m t o b a c c o l e a v e s (Brish a m m a r a n d J u n t t i 1974). F o r t h e s e r e a s o n s a l t e r n a t i v e p r o c e d u r e s h a d to be f o l l o w e d . As first step a polysome/membrane fraction was i s o l a t e d f r o m c e l l h o m o g e n a t e s of p a r s l e y a n d

Specific activity (units/mg Prot.

t~ 6

~2

./.

-.

~

C

~..../

/I

10 9 8 .7E -6:5 U .5~

~...."&"r i

m

4

5

1'0 1'5 Segment number

Fig. I. I s o e l e c t r i c f o c u s i n g of P N P a s e f r o m tomato seedlings partially purified by glycerol gradient centrifugation ( f r a c t i o n "GG"; 2 m g of p r o t e i n ) on a gel s l a b of S e p h a d e x G 75 a p p l y i n g a p H - g r a d i e n t of 3 . 5 - 1 0 . O . @ @, P N P a s e a c t i v i t y ; --- p H - g r a d i e n t . G e l s t r i p s w e r e s l i c e d i n t o 1-cm s e g m e n t s , treated with TG-buffer, and PNPase activity a s s a y e d in the e x t r a c t s .

83 F r o m the typical a c t i v i t i e s o u t l i n e d in Int r o d u c t i o n p u r i f i e d PNPase (fraction "GG") from both sources c a t a l y z e d the n u c l e o t i d e d i p h o s p h a t e p o l y m e r i s a t i o n de novo or by e l o n g a t i o n of an added p o l y n u c l e o t i d e primer as well as the r i b o p o l y n u c l e o t i d e p h o s p h o r o lysis (the n u c l e o s i d e d i p h o s p h a t e - o r t h o p h o s phate exchange was not assayed). During e l e c t r o p h o r e t i c s e p a r a t i o n of fraction "GG" from p a r s l e y cells in p o l y a c r y l a m i d e gels of large pore size a major a c t i v i t y band of PNPase ("I") and a m i n o r band ("II") were r e s o l v e d (Fig. 2, A and B) w h i c h c o i n c i d e d each with a p r o t e i n band (Fig. 2, C) . Band "I" stained p o s i t i v e l y for c a r b o h y d r a t e indicating its nature as a glycoprotein. Presum a b l y its p o s i t i o n in the gel does not reflect the true m o l e c u l a r mass since c h a r g e d groups of the c a r b o h y d r a t e m o i e t y may well have i n f l u e n c e d the migration. A t t e m p t s to analyze the p o l y p e p t i d e c o m p o s i t i o n of the two active bands by e l u t i n g them from the gel and s u b j e c t i n g each eluant to gel e l e c t r o p h o resis in the p r e s e n c e of sodium d o d e c y l s u l f a t e failed b e c a u s e of the low p r o t e i n c o n c e n t r a tions. E l e c t r o p h o r e s i s in large pore size gels of the two active c o m p o n e n t s of p I ~ 5 and p I ~ 7 . 5 (Fig. I) after r e c o v e r i n g them s e p a r a t e l y from the gel bed y i e l d e d one m a i n band of PNPase for each c o m p o n e n t a c c u m u l a t i n g in a p a r t i c u l a r r e y i o n of the gel (Fig. 3) . ~hese p o s i t i o n s compare well with those of the two PNPase bands r e g i s t e r e d after e l e c t r o p h o r e t i c s e p a r a t i o n under n o n d e n a t u r i n g c o n d i t i o n s (see above) of fraction "GG" (Fig. 2): the m i n o r c o m p o n e n t of pI 5 c o i n c i d e d in p o s i t i o n with band "II", that of pI 7.5 with band "I" thus i n d i c a t i n g their m u t u a l identity. A 1,2

A 1.! ¸

1.0 ¸

0.8

~

0.6,

15

~ 0.2

!

\ L,"

1

2

3

~,

B

c Fig. 2. G e l e l e c t r o p h o r e s i s of f r a c t i o n "GG" from p a r s l e y cells in a n o n d e n a t u r i n g polya c r y l a m i d e gel. 60-100 pg of p r o t e i n were a p p l i e d to a 3.75% (w/v) gel column (0.6 x 6 cm). S e p a r a t i o n was at 3 m A / g e l for about 2 h. PNPase a c z i v i t y was assayed as d e s c r i b e d under "Materials and Methods". A, [ 1 4 ~ A M P ~olymer s y n t h e s i z e d by g e l - b o u n d PNPase from ~-14~ADP; B, p a t t e r ~ of r i b o p o l y n u c l e o t i des formed from u n l a b e l l e d ADP and v i s u a l i z e d by staining with acridine orange; C, polypeptides after staining with C o o m a s s i e brilliant blue.

B1.2,

pl 5,0

5 6 1 Migration [cm}

1,0.

pl 7,5

1,0-

0,8-

0.8-

RO.6: u

u E



~5 2

3

~

5

6

Migrotion

7 {cm)

~

~

~

~

g

Migration

(cm)

Fig. 3. G e l e l e c t r o p h o r e s i s under n o n d e n a t u r i n g c o n d i t i o n s of the two components with PNPase a c t i v i t y o b t a i n e d by i s o e l e c t r i c focusing of f r a c t i o n "GG" from p a r s l e y cells. The two bands were eluted from the gel, c o n c e n t r a t e d and a p p l i e d to the gel column as d e s c r i b e d in Fig. 2.A, [14 0 AMP p o l y m e r s y n t h e s i z e d by the g e l - b o u n d active c o m p o n e n t of pI~5, and B, by the active c o m p o n e n t of pIm7.5.

84 From these results it is c o n c e i v a b l e that p a r s l e y PNPase exhibits two active forms w h i c h differ a p p a r e n t l y in m o l e c u l a r mass and / or charge. Since band II r e s p e c t i v e the c o m p o n e n t of pI~5 did not stain for carbohydrates, this form of PNPase o b v i o u s l y lacks the c o r r e & p o n ding structural c o m p o n e n t c h a r a c t e r i s t i c for band "I" r e s p e c t i v e the c o m p o n e n t of pI~7.5. This view is s u p p o r t e d by the results of the subunit analyses (s. Fig. 4). From e l e c t r o p h o r e s i s in S D S - p o l y a c r y l a m i d e gels (10%) it became evident that p o l y p e p t i des with apparent m o l e c u l a r masses of Mr 160 OOO, 140 O00, 70 OO0, 34 000 and 12 OOO were r e g u l a r l y p r e s e n t t h r o u g h o u t the purification up to active c o m p o n e n t of pI~7.5 obtained by isoelectric focusing (Fig. 4; lanes A, B, D). Since their amounts p a r a l l e l ed the activity of PNPase they are p r e s u m a b l y components of the enzyme. The subunit of M r~70 000 was i d e n t i f i e d as a g l y c o p r o t e i n (lane C). We have also examined the polypeptides c o n s t i t u t i n g the c o m p o n e n t of pI 5 (lane E). M o s t s t r i k i n g l y is the absence of t h e p o l y p e p t i d e s with Mr ~ 1 6 0 OOO and 140 OO0 from this active form of PNPase; moreover, from the g l y c o p r o t e i n of M r ~ 7 0 OOO only traces were detectable. A l t h o u g h a high degree of p u r i f i c a t i o n was a c h i e v e d we do not claim that these p r e p a r a t i o n s are homogeneous.

tion of c o n v e n t i o n a l column c h r o m a t o g r a p h y gave rise to a v a r y i n g number of active components w i t h d i f f e r e n t subunit p a t t e r n s indicating the i n s t a b i l i t y of PNPase as well as the influence of the c a r b o h y d r a t e m o i e t y w h i c h is p r o b a b l y charged. The plant PNPase, a p p a r e n t l y a h e t e r o o l i g o m e r of at least five subunits, is c l e a r l y disting u i s h a b l e from the "classical" p r o k a r y o t i c PNPase in respect to subunit c o m p o s i t i o n and m o l e c u l a r mass. These d i f f e r e n c e s together with the finding that the plant PNPase does not c r o s s - r e a c t with antisera raised a g a i n s t the PNPase of E s c h e r i c h i a coli seem to exclude an e v o l u t i o n a r y relationship. C o m m o n features, however, seem to be the a t t a c h m e n t of both to i n t r a c e l l u l a r membranes, and the complete activity i n h i b i t i o n by inorganic p h o s p h a t e (3 - 5 ~M) . Gel e l e c t r o p h o r e s i s under n o n d e n a t u r i n g conditions y i e l d e d two active formsof PNPase. Indications are that they are also a c c u m u l a ted into two active bands during i s o e l e c t r i c focusing of the p a r t i a l l y p u r i f i e d fraction "GG". The results from e l e c t r o p h o r e s i s under d e n a t u r i n g c o n d i t i o n s lend support to the c o n c l u s i o n that the PNPase form of low molecular mass - s e p a r a t e d as band "II" or comp o n e n t of pI 5 - lack the large subunits of M r ~ 160 000 and 140 0OO and p r o b a b l y also that of M r ~ 7 0 OOO. It is tempting to suggest that these subunits are c o n s t i t u t i v e for the h o l o e n z y m e but are of minor importance for the c a t a l y t i c activity, while the p o l y p e p t i des of M r ~ 12 000 and 34 O00 form the core enzyme c a t a l y z i n g the p o l y m e r i z a t i o n reaction. At p r e s e n t there is no answer to the q u e s t i o n w h e t h e r both forms of PNPase exist in vivo or o r i g i n a t e from a single enzyme by d e g r a d a t i o n during the p u r i f i c a t i o n procedure. Acknowledgement The authors are grateful to Dr. H. Soreq, W e i z m a n n Institute of Science, R e h o v o t / I s r a e l for s u p p l y i n g the antibody a g a i n s t p o l y n u c l e otide p h o s p h o r y l a s e of E.coli. References

Fig. 4. Sodium dodecyl sulfate gel electrophoresis in p o l y a c r y l a m i d e (5% stacking, 10% s e p a r a t i o n gel) of fractions r e s u l t i n g from various p u r i f i c a t i o n p r o c e d u r e s of PNPase from parsley cells. A l i q u o t s of the following fractions were applied to the slots of the gel: A, crude extract, B, p o l y s o m e / m e m b r a n e fraction, C,D, comp. of pI 7.5,E, of pI 5 ~ s o e l e c t r i c focusing of fraction "GG'~; C was stained with dansyl h y d r a z i n e - p e r i o d a t e for carbohydrate, A, B, D, E with C o o m a s s i e brilliant blue for protein. Discussion The results of the p r e s e n t study e s t a b l i s h the e x i s t e n c e of a PNPase in e u k a r y o t i c plant cells. The isolation and p u r i f i c a t i o n of this enzyme from both sources suffered from several shortcomings. In crude extracts and conc e n t r a t e d solutions the enzyme lost a c t i v i t y i r r e v e r s i b l y w i t h i n hours; the specific activity was quite low when compared to PNPase from p r o k a r y o t i e o r g a n i s m s (Soreq and L i t t a u er 1977; N o l d e n and Richter 1982). A p p l i c a -

B r i s h a m m a r S, Juntti N (1974) Arch B i o c h e m Biophys 164: 224-232 B r u m m o n d DO, S t a e h e l i n M, Ochoa S (1957) J Biol Chem 225: 835-840 Eckhard A, Hayes C, G o l d s t e i n J (1976) Anal B i o c h e m 73: 192-197 G o d e f r o y - C o l b u r n T, G r u n b e r g - M a n a g o M (1972) in: Boyer PD (ed) The enzymes, Vol 7, Academic Press, New York, pp 533-574 Kessler B, Chen D (1964) B i o c h i m Biophys Acta 80: 533-539 Laemmli UK (1970) N a t u r e 227: 680-685 N o l d e n WT, Richter G (1982) Z N a t u r f o r s c h 37c: 600-608 Richter G (1973) Planta 113: 79-96 Richter G, Seitz U (1970) Planta 92, 309-326 S c h a c t e r l e GR, Pollack RL (1973) Anal Biochem 51: 654-655 Soreq H, Littauer UZ (1977) J Biol C h e m 252: 6885-6888

Polynucleotide phosphorylase from plant cells.

The isolation of polynucleotide phosphorylase (EC 2. 7. 7. 8) from suspension cultured plant cells of parsley (Petroselinum sativum) and from tomato s...
380KB Sizes 0 Downloads 0 Views