Annu. Rev. Cell Bioi. 1991. 7:601-32 Copyright © 1991 by Annual Reviews Inc. All rights reserved

ANNUAL REVIEWS

Further

Quick links to online content

REGULATORS AND EFFECTORS

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

OF

ras

PROTEINS

Gideon Bollag and Frank McCormick Department of Molecular Biology, Cetus Corporation, Emeryville, California 94608 KEY

WORDS:

oncogenes, GTPase-activating proteins, signaling

CONTENTS INTRODUCTION..............................................................................................................

/

601

THE GDP GTP CyCLE......................................................................................................

602

STRUCTURE AND MECHANISM OF ras PROTEINS.................................................................

605

GENES ................................................................................................

608

Mammals .. ..... . . ..... . ... ................................. . ........... . . .... .. . ......................................... yeasts . . . . . . . ...... . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . ..... Other Organisms .................. . ............... . . ................ . ................... . ............. . . .. . .......... .

608 609 610

BIOCHEMICAL TARGETS OF ras PROTEINS ..... . . . . . . . .... . . . .. . . . ............. . . ..... . . . ............ . . . . ...........

612

FUNCTIONS OF

ras

EXCHANGE FACTORS ......................................................................................................

613

Mammals ...... . . . .... .... . . ..... . . . . . . ..... . . . . . . . . . . . . . ... . .. . . . . ...... . . . . . . ..... .... . . . .. . . . . . ... . . .. . . . . ...... . .. ... . yeasts. . . . . . . . .. . . . . . . . . . ... . . . . . . . . .. . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

613 614

GTPASE-ACTIVATING PROTEINS.......................................................................................

615

Identification ofras GAPs .............. . ...... . ..................................... . ... . ......... . ......... . . . . . Biochemical Characterization ofras GAPs .............................. . . . . .... . ..... . . ................ . Tyrosine Phosphorylation andras GAPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regulation afras GAPs .. . . ......... . . . . . . ..... . . . . . .......... . . . ....... . . . . . ........... . ........ . ................. IRA Genes in Yeast ............... . ........ . ......................... . ...................... . ........... . ............ GAPs forras-Related Proteins ............................. . .. . ....................... . ....................... . GAPs as Effectors ............................................. . . . ........ ............................................

615 616 617 618 619 619 620

FUTURE PROSPECTS........................................................................................................

623

REFERENCES............................................... . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . ... . ... . . . ....... .............. ....

623

INTRODUCTION The three proteins encoded by human ras genes (H-ras, K-ras, N-ras) are GTPases (Barbacid 1 987). These 2 1 -kd proteins bind guanine nucleotides 60 1 0743-4634/9 1 / 1 1 1 5-060 1 $02.00

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

602

BOLLAG & McCORMICK

with high affinity and hydrolyze GTP with low catalytic efficiency. They serve as signal transducers by switching from an active GTP-bound form to an inactive GDP-bound form. The biological functions of these switches remain a mystery. Mutations in ras genes that result in proteins that are trapped in the GTP-bound form are oncogenic. M uch of the momentum that propels research into the function of ras oncogenes comes from the realization that they play a major causal role in at least 30% of all human cancers (Bos 1989). It seems likely that a full understanding of ras function will eventually lead to new approaches towards cancer therapy. Since ras proteins play important roles in signal transduction, the regu­ lation of ras activity is tightly controlled. Two types of protein determine whether ras proteins are bound to GDP or GTP. Guanine nucleotide­ releasing proteins (GNRPs) facilitate the release of GDP thereby allowing GTP to bind. GTPase-activating proteins (GAPs) accelerate the hydrolysis of GTP. These proteins lie upstream of ras proteins in signal transduction pathways. Downstream of ras are the effectors of ras action. So far, ras effectors are understood only in the yeast Saccharomyces cerevisiae. In this review, we summarize current understanding of the biological roles of ras proteins, the regulation of ras activity, and the potential ras effector pathways. Past reviews have highlighted other aspects of ras action (Bar­ bacid 1987; Bos 1989; Gibbs & Marshall 1989; Santos & Nebreda 1989; Broach & Deschenes 1990), and readers are referred to these for complete references. THE GDP/GTP CYCLE

Ras proteins are part of a large and diverse family of GTPases, whose functional and structural properties have been recently reviewed (Bourne et al 1990, 1991; Hall 1990). The essential feature of these proteins is their ability to cycle between inactive and active forms by switching between GDP- and GTP-bound forms (Figure I ) . X-ray structural analysis has revealed differences between these two forms that must account for their different biological activities. These differences are briefly summarized in the following section. In Figure I , the GTP/GDP cycle is schematized to highlight possible regulators and effectors. The conversion of the inactive, GDP-bound form to the active GTP-bound form is dependent on cellular exchange factors, the GNRPs, and presents a likely point of regulation. Candidates for mammalian and yeast factors have been reported (see section on Exchange Factors). The GNRP catalyzes the release of GDP, and the dissociation rate is designated k I (Figure I ) . Since GTP is present in excess con-

ras PROTEINS

603

Regulation?

::;>

ras



Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

GNRP

ras

ACTIVE Effector

*

ras

/cAP

t

?



2485

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

ras PROTEINS

617

putative effectors (Sigal et al 1986a; see also Figure 2). p120-GAP binds weakly to these effector mutants (Vogel et a1 1 988; Schaber et al 1989) and only poorly catalyzes their GTPase activity (Adari et al 1988; Cales et al 1988). (d) p120-GAP binds tightly to Krev-1 (a ras homologue, see section on GAPs as Effectors), yet fails to catalyze GTP hydrolysis (Frech et al 1990; Rata et al 1 990). (e) Binding of an anti-ras monoclonal antibody (Y1 3-2S9) blocks the action of pI20-GAP on ras proteins (Trahey & McCormick 1 987). Mutations in the region to which this antibody binds (amino acids 63 to 73) also fail to interact with GAP (Srivastava et al 1989). While binding of NF l -GAP to Krev- l has not yet been examined, all of the other properties listed above apply to NF l -GAP as well as p 1 20GAP (Xu et al 1 990a; Martin et al 1990; Ballester et al 1 990; Bollag & McCormick 1991); however, some interesting differences have been observed. NF l -GAP binds to wild-type ras proteins with a 30-fold higher affinity than does p 1 20-GAP (Martin et al 1 990). In contrast, the specific activity of p120-GAP is about 30-fold higher than that of N F l -GAP. Furthermore, the affinity of some mutated ras proteins is up to 300-fold higher for NF l-GAP than for p120-GAP (Bollag & McCormick 199 1 ) . Indeed, the affinity o f NF l-GAP for GTP-bound mutant H-ras (glutamine at amino acid position 6 1 replaced by leucine) is about 2 nM, which suggests that this oncogenic protein will be tightly associated with NF1GAP in transformed cells. Tyrosine Phosphorylation and

ras

GAPs

Recently, much attention has focused on the interactions of p 1 20-GAP with tyrosine kinases. Among the growth factor receptors shown to phos­ phorylate GAP on tyrosine are those for platelet-derived growth factor (PDGF ; Molloy et a1 1989 ; Kaplan et a1 1 990), epidermal growth factor (EGF ; Ellis et a1 1 990; Margolis et aI1 990), acd colony-stimulating factor 1 (CSF 1 ; Reedijk et al 1 990). In addition, the tyrosine kinase oncogenes, v-src, v-fps, and v-abl, are also able to phosphorylate p 1 20-GAP (Ellis et aI 1990). F urthermore, pI20-GAP binds tightly to many of these tyrosine kinases, but only when they have been activated (Anderson et al 1 990 ; Kaplan et al 1990; Kazlauskas et al 1990; Margolis et a1 1 990; Reedijk et al 1990; Brott et al 1991). Interestingly, the PDGF -induced phos­ phorylation/association of p 1 20-GAP by the PDGF receptor is blocked in cells transformed by oncogenic ras proteins. Activated tyrosine kinases have been shown to bind to other signaling molecules as well. The other proteins that interact with the PDGF and EGF receptors include phos­ pholipase C (Margolis et al 1 989; Meisenhelder et al 1 989; Wahl et al 1 989), phosphatidylinositol (PI) 3'-kinase (Kaplan et al 1 987), and the

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

618

BOLLAG & McCORMICK

serine/threonine protein kinase encoded by the raj oncogene (Morrison et al 1989). The CSF 1 receptor appears to bind only to p I20-GAP and PI 3'-kinase (Reedijk et al 1990). The role of ras in these signaling complexes is currently being inves­ tigated. Some interesting links with phospholipase C-y have been reported. In mouse fibroblasts, microinjection of either ras or phospholipase C-y induces a mitogenic response (Smith et aI1989). Tyrosine phosphorylation directly stimulates the activity of phospholipase C-y (Nishibe et al 1990). Inhibitory antibodies to phospholipase C-y block the mitogenic induction by both phospholipase C-y and ras. However, ras antibodies block only ras responses, which suggests that ras acts upstream of phospholipase C-y in the mitogenic pathway (Smith et al 1990). Interpretation of these results are complicated by the fact that G protein-coupled receptors also modulate phospholipase C activity (Stryer & Bourne 1986; Gilman 1987; Birnbaumer 1990; Bourne et al 1990) . In addition to binding to activated tyrosine kinases, p I20-GAP forms an alternative complex with two other tyrosine-phosphorylated proteins of molecular weights 62 and 190 K [hence termed p62 and p190 (Bouton et a11991; Ellis et al 1990)]. More recently it was shown that isolated SH2 domains derived from p I 20-GAP are sufficient to direct binding to these phosphotyrosine-containing proteins as well as to autophosphorylated tyrosine kinases (Anderson et al 1990; Moran et al 1990). Other SH2containing proteins also associate with tyrosine phosphorylated proteins, albeit with different specificities (Mayer et al 1991). This suggests that these domains, which comprise the amino-terminal one-third of the p120GAP protein, direct the oligomerization of p 120-GAP with other phos­ phoproteins, presumably forming large signaling complexes. Regulation of ras GAPs

While it is clear that GAPs regulate the activity of ras proteins, it is the regulation of GAP activity that is apparently the target of extracellular signals. As mentioned above (The GDP/GTP Cycle), several studies, which have explored the regulation of the nucleotide state of ras, suggest that the accumulation of ras in its GTP state is, in part, a consequence of GAP inhibition. In response to T-cell activation, the activity of GAP is inhibited, thus leading to the activation of ras (Downward et al 1990a). This inhi­ bition apparently proceeds via protein kinase C activation: independent activation of protein kinase C by phorbol esters also inhibits GAP activity. In fibroblasts that overproduce the insulin receptor, insulin is able to activate ras, although the effect is protein kinase C-independent (Burgering et al 1991). Direct in vitro assays have identified mitogenic lipids that can inhibit

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

ras PROTEINS

619

GAP activity directly (Tsai et al 1 9 89a,b; Y u et a l 1 990). Phosphatidyl­ inositol-4,5-diphosphate, phosphatidic acid, arachidonic acid, and other phospholipids with arachidonate at the sn2 position are all capable of inhibiting GAP activity in crude extracts (Tsai et al 1989a,b). It appears that rho-specific GAP is also inhibited by lipids (Tsai et aI 1 9 89a). F urther­ more, a lipoxygenase metabolite of arachidonic acid is more potent than arachidonic acid in inhibiting GAP activity (Yu et al 1 990). In addition, a cytoplasmic protein has been found that may mediate the lipid-dependent inhibition of intrinsic or GAP-stimulated ras GTPase activity (Tsai et al 1 990). It appears that the lipid inhibition primarily affects NFl-GAP activity (Bollag & McCormick 1 991). Furthermore, the inhibition is non­ competitive, which indicates that lipid-inhibited NF l-GAP is still com­ petent to interact with ras proteins. Recently it was found that cyclooxygenase metabolites of arachidonic acid actually stimulate pI20-GAP activity (Han et al 1 99 l ). While arachi­ donic acid can inhibit both p 1 20-GAP and NF l -GAP, the stimulation by these eicosanoids is specific for p120-GAP. It appears that this stimulation is rather selective, since the prostaglandins 9a-PGF 2, and PGA2 stimulated the activity while 9f3-PGF 2" PGF la and thromboxane B2 did not. IRA Genes in Yeast In the yeast Saccharomyces cerevisiae, IRA genes have an antagonistic function to that of the CDC25 gene: while CDC25 gene disruptions result in decreased levels of cAMP, IRA mutations result in increased levels (Tanaka et al 1 989). In addition, IRA disruptions suppress the lethality of CDC25 mutations. As described previously, IRA] and IRA2 share significant homology with p 1 20-GAP and more extensive homology with N F l -GAP. Recombinant mammalian pI20-GAP expression suppresses the phenotype of these mutations (Ballester et a1 1 989; Tanaka et aI 1 990a). Furthermore, a fragment of NF l -GAP encoding the GAP-related domain also suppresses the IRA defect (Xu et a1 1 990a; Martin et a1 1 990; Ballester et al 1990). GAPs for ras-Related Proteins

Since the GAPs for ras proteins are exquisitely selective, different GAPs should exist for other small guanine nucleotide-binding proteins with low intrinsic GTPase activity. Much effort has been focused on the GAP specific for Krev-1, since Krev-l has been shown to bind non-productively to p I20-GAP (Frech et al 1 990; Hata et aI1 990). Both cytosolic (Kikuchi et al 1 989; Veda et al 1 989) and membrane-bound (Polakis et al 1 99 1 ) forms of Krev-l GAP have been described. The membrane-bound form has been purified to homogeneity, revealing a monomeric molecular weight of

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

620

BOLLAG & McCORMICK

88 K (Polakis et al 1991). This Krev- l GAP is inactive toward ras proteins as well as other small guanine nucleotide binding proteins including rho, G25K and rae-I. Recent cloning and sequencing of the gene encoding this GAP has revealed no regions of significant homology to any of the ras GAPs (Rubinfeld et al 1991). GAPs for other proteins have also been identified. Two groups have reported the partial purification of rho GAP from human spleen (Garrett et a1 1989) and bovine brain (Yamamoto et aI 1990). Sizing results suggest that the rho GAP from human spleen may be about 29 kd and the one from bovine brain is between 37 and 200 kd, although it is not yet clear that these are unrelated GAPs. A specific ral GAP of molecular weight > 150 K has also been reported in brain and testis cytosols (Emkey et al 1 9 9 1 ). Both cytosolic and membrane-bound forms of a GAP specific for rab3A have been reported (Burstein et al 1991). A GAP has also been identified in porcine liver for the yptl protein, and this GAP interacts with the yptl effector region (Becker et aI1 99 l ). A further exciting development has been the demonstration that the homologous human proteins ber and n-chimerin are GAPs for rae proteins (Diekmann et al 1991). It is likely that each small GTP-binding protein may have its own specific GAP or GAPs. GAPs as Effectors

A growing volume of evidence suggests that the GAPs, which down regu­ late ras proteins by stimulating their GTPase activity, also have a second role as effectors. As described previously, the GAPs bind to oncogenic mutants of ras without catalyzing their GTPase activity (Vogel et al 1988; Krengel et al 1990; Bollag & McCormick 1991) . While the lack of catalysis explains the fact that these oncogenic proteins accumulate in their GTP­ bound state, the observation that some of these mutants bind to GAP with a higher affinity than wild-type ras proteins is consistent with a downstream role for GAP. Furthermore, ras proteins mutated at the effector-binding site interact poorly with GAP (Adari et al 1988; Cales et a1 1 988; Vogel et al 1988; Rey et al 1 989; Schaber et al 1989). Therefore, GAP fulfills this criterion for ras effector: it binds well to activated ras proteins and poorly to proteins with impaired signaling function. These arguments have recently been strengthened by the observation that certain cffcctor mutations reduce the transforming ability of activated but not normal ras: reduced binding to the effector (e.g. pI20-GAP) was compensated for by reduced GTPase activity for the normal proteins, while no compensatory effect occurred with the activated proteins since their GTPase was unaffected

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

ras PROTEINS

62 1

by p I 20-GAP (Farnsworth et al 1 9 9 1 ) . Binding of GAP to ras is also GTP-dependent. In addition, studies with ras monoclonal antibodies have provided more data to support the GAP-as-effector hypothesis: The anti­ body Y 1 3-259 inhibits the action of GAP (Trahey & McCormick 1 987; Adari et al 1988; Rey et al 1 989; Srivastava et al 1 989; Martin et al 1 990) and ras (Mulcahy et al 1 985; Smith et al 1 986), while the antibody Y 1 3238 inhibits neither GAP activity (Adari et al 1 988; Rey et al 1 989), nor ras activity (Kung et al 1 986). Further evidence has come from the unexpected finding that a sup­ pressor of ras-induced transformation binds tightly to p l 20-GAP. In the search for proteins that could revert the transformed phenotype, a ras homologue was found and named Krev- l (Kitayama et al 1 989). Krev- l is identical to the independently isolated rap and smg p2 1 proteins (Kawata et a1 1 988; Pizon et al 1 988). Krev- l was found associated with cytochrome b in neutrophils (Quinn et a1 1 989) and is a substrate for cAMP-dependent protein kinase in platelets (White et al 1 990). Interestingly, while p 1 20GAP is ineffective in stimulating the Krev- l GTPase activity, it binds to Krev- l with higher affinity than to wild-type ras proteins (Frech et a1 1 990; Hata et al 1 990). Thus it has been proposed that Krev- l suppresses ras activity by binding to and sequestering p I 20-GAP. If the sole function of p I 20-GAP were to stimulate ras GTPase activity, then the sequestration of p l 20-GAP would result in an accumulation of GTP-bound ras. There­ fore, ras proteins would be activated by Krev- l overexpression. Since the opposite effect is observed, it is attractive to speculate that Krev- l depen­ dent suppression results from sequestering an effector of ras action. This idea is supported by evidence that activating mutations in Krev- l poten­ tiate its suppressing ability (Kitayama et al 1 990): these mutations result in an accumulation of Krev- l in its GTP-bound state, which increases its affinity for the ras effector. These data are consistent with the idea that this effector may be p I 20-GAP, since p 1 20-GAP does indeed bind with high affinity to the GTP-bound form of Krev- l (Frech et al 1 990). While these observations provide indirect evidence for the GAP-as­ effector hypothesis, recently direct evidence has been reported. In guinea pig atrial membranes, where a G protein (Gk) couples a muscarinic receptor to a potassium channel, ras and p I 20-GAP collaborate to inhibit this coupling (Yatani et al 1 990). These studies show that oncogenic mutants of ras are more effective and that antibodies to GAP block the ras effect. Furthermore, the p I 20-GAP effect requires more than simple binding to ras, since the isolated catalytic domain of p l 20-GAP is over 1 00-fold less effective in blocking the coupling. These data suggest that p 1 20-GAP plays a direct role in generating some sort of signal that impedes the interaction

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

622

BOLLAG & McCORMICK

of Gk with the muscarinic receptor. Data from other G protein-coupled systems suggest a similar function for ras and GAP. In these other systems, ras activation apparently blocks the coupling of tyrosine kinase receptors with G protein signaling pathways (Tarpley et al 1 986; Benjamin et al 1 987, 1 988; Parries et al 1 987; Maly et a1 1 988; Alonso et a1 1988, 1 990). One recent study concluded that p 1 20-GAP is not the sole effector of ras proteins (Zhang et al 1 990). Overexpression of p 1 20-GAP was able to suppress transformation by overexpressed wild-type ras protein, but had no effect on the transformation produced by activated ras. It was suggested that p 1 20-GAP should potentiate the effect of activated ras proteins if p I 20-GAP were the only effector. Since the only effect of p I 20-GAP overexpression was the down regulation of wild-type ras, it was determined that p 1 20-GAP was not a dominant downstream element in the ras path­ way. The discovery of N F l -GAP, however, suggests that a reevaluation of this conclusion may be in order: the results are consistent with p 1 20GAP and NF l -GAP as dual downstream effectors. Consistent with this explanation, we have found that both p I 20-GAP-like and N F I -GAP-like activities can be found in clonal cell lines (Bollag & McCormick 1 99 1 ). The regulation and putative effector roles of the GAPs are highlighted in Figure 5. Both p I 20-GAP and NF l -GAP bind to GTP-bound ras proteins. This binding could serve dual purposes: down regulation of ras by catalyzing GTP hydrolysis and active signaling (signals A and B). Signal A, for example, could lead to uncoupling of certain G proteins from their receptors. Down regulation by the GAPs would be inhibited by certain lipids, by oncogenic activation , or by protein kinase C. This inhibition would lead to the accumulation of ras bound to GTP, thereby activating

Signal A Figure 5

Signal 8

Model of the putative effector functions of GTPase-activating proteins.

ras PROTEINS

623

the signaling pathways. In contrast, p 1 20-GAP activity would be stimu­ lated by certain prostaglandins and result in the inactivation of ras. Regen­ eration of the active form is catalyzed by GNRPs. In this model, both regulation of the nucleotide state of ras and signal transmission from ras are mediated by the GAP proteins. As depicted in Figure 1 , alternative models implicate regulation through the GNRPs and signaling by novel effector proteins.

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

FUTURE PROSPECTS Here we have reviewed the evidence that implicates ras as a switch along essential cellular pathways. Factors regulating this switch have been identi­ fied and are being characterized; however, the true function of this switch in mammalian cells remains undiscovered. While interactions with other signaling systems are evident, no unifying picture has emerged. We expect many of these mysteries will be solved in the near future. The roles of the GNRPs and GAPs will be clarified and more factors that interact directly with ras will be found. Biochemical activities will be assigned to the effectors of ras. And we hope that these developments will lead to new and better treatments for the diseases associated with ras. Literature Cited

Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. 1 . , McCormick, F. 1988. Guano­ sine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240: 5 1 8-21 Allende, C. c., Hinrichs, M . V., Santos, E., Allende, 1. E. 1988. Oncogenic ras protein induces meiotic maturation of amphibian oocytes in the presence of protein syn­ thesis inhibitors. FEBS Lett. 234: 426-30 Alonso, T., Morgan, R. 0., Marvizon, 1. C., Zarbl, H., Santos, E. 1 988. Malignant transformation by ras and other onco­ genes produces common alterations in inositol phospholipid signaling pathways.

region of srn,q p 25 A in its interaction with membranes and the GDP/GTP exchange protein. Mol. Cell. Bioi. I I : 1 438--47 Araki, S., Kikuchi, A., Hata, Y., Isomura, M., Takai, Y. 1 990. Regulation of revers­ ible binding of srng p21 A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regu­ latory protein, GDP dissociation inhibi­ tor. J. Bioi. Chern. 265: 1 3007- 1 5 Aroian, R . V . , Koga, M . , Mendel, 1. E., Ohshima, Y., Sternberg, P. W. 1 990. The let-23 gene necessary for Caenorhabditis ele,qans vulval induction encodes a tyro­ sine kinase of the EGF receptor subfamily.

Alonso, T., Srivastava, S., Santos, E. 1 990. Alterations of G-protein coupling func­ tion in phosphoinositide signaling path­ ways of cells transformed by ras and other membrane-associated and cytoplasmic oncogenes. Mol. Cell. BiD!. 10: 3 1 1 7-24 Anderson, D., Koch, C. A., Grey, L., Ellis, c., Moran, M. F., Pawson, T. 1 990. Bind­ ing of SH2 domains of phospholipase C y I , GAP, and Src to activated growth factor receptors. Science 250: 979-82 Araki, S., Kaibuchi, K., Sasaki, T., Hata, Y., Takai, Y. 1 99 1 . Role ofthe C-terminal

Ballester, R., Marchuk, D., Boguski, M., Saulino, A., Letcher, R., et al. 1 990. The NFl locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63: 851-59 Ballester, R., Michaeli, T., Ferguson, K., Xu, H. P., McCormick, F., Wigler, M. 1 989. Genetic analysis of mammalian GAP expressed in yeast. ee1l 59: 68 1-86 Barbacid, M. 1 987. ras Genes. Annu. Rev.

Proc. Natl. Acad. Sci. USA 85: 4271-75

Nature 348: 693-99

Biochern. 56: 779-827

Barker, K., Aderem, A., Hanafusa, H. 1 989. Modulation of arachidonic acid meta-

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

624

BOLLAG & McCORMICK

bolism by Rous sarcoma virus. J. Virol. 63: 2929-35 Bar-Sagi, D., Feramisco, 1. R. 1 986. I nduc­ tion of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233: 106 1-68 Bar-Sagi, D., Suhan, J. P., McCormick, F., Feramisco, J. R. 1 988. Localization of phospholipase A2 in normal and ras­ transformed cells. J. Cell Bioi. 1 06: 1 64958 Becker, J., Tan, T. J., Trepte, H.-H., Gallwitz, D. 1 99 1 . M utational analysis of the putative cffector domain of the GTP­ binding Yptl protein in yeast suggests specific regulation by a novel GAP activity. EMBO J. 1 0 : 785-92 Beitel, G. J., Clark, S. G., Horvitz, H. R. 1 990. Caenorhabditis elegans ras gene let60 acts as a switch in the pathway of vulval induction. Nature 348: 503-9 Benjamin, C. W., Connor, J. A., Tarpley, W. G., Gorman, R. R. 1 988. NIH-3T3 cells transformed by the EJ-ras oncogene exhi­ bit reduced platelet-derived growth factor­ mediated Ca2+ mobilization. Proc. Natl. A cad. Sci. USA 85: 4345-49 Benjamin, C. W., Ta rp ley . W. G., Gorman, R. R. 1 987. Loss of platelet-derived growth factor-stimulated phospholipase activity in NIH-3T3 cells expressing the EJ-ras oncogene. Proc. Natl. Acad. Sci. USA S4: 546 50 Berridge, M. J., Irvine, R. F. 1 989. Inositol phosphates and cell signalling. Nature 34 1 : 197-205 Birchmeier, C, Broek, D., Wigler, M. 1 985. RA S proteins can induce meiosis in Xeno­ pus oocytes. Cell 43: 6 1 5-2 1 Birnbaumer, L. 1 990. G proteins in signal transduction. Annu. Rev. Pharmacal. Toxicol. 30: 675-705 Bishop, J. G. JIl, Corces, V. G. 1 988. Expression of an activated ras gene causes developmental abnormalities in trans­ genic Drosophila melanogaster. Genes Dev. 2: 567-77 Bollag, G., McCormick, F. 1 99 1 . Differ­ ential regulation of ras GAP and neuro­ fibromatosis gene product activities. Nature 3 5 1 : 576-79 Borasio, G. D., John, J., Wittinghofer, A., Barde, Y. A., Sendtner, M., Heumann, R. 1 989. ras p21 protein promotes survival and fiber outgrowth of cultured embry­ onic neurons. Neuron 2: 1 087-96 Bos, 1. L. 1 989. ras oncogenes in human cancer: a review. Cancer Res. 49: 4682-89 Bourne, H. R., Sanders, D. A., McCormick, F. 1 990. The GTPase superfamily: a con­ served switch for diverse cell functions. Nature 348: 1 25-32 Bourne, H. R., Sanders, D. A., McCormick,

F. 1 99 1 . The GTPase superfamily: con­ served structure and molecular mechan­ ism. Nature 349: 1 1 7-27 Bouton, A. H . , Kanner, S. B., Vines, R. R., Wang, H.-C. R., Gibbs, 1. B . , Parsons, 1. T. 1 99 1 . Transformation by pp60'" or stimulation of cells with epidermal growth factor induces the stable association of tyrosine-phosphorylated cellular proteins with GTPase activating protein. Mol. Cell. BioI. I I : 945-53 Boy-Marcotte, E., Damak, F., Camonis, J . , Garreau, H . , Jacquet, M . 1 989. The C­ terminal part of a gene partially homolo­ gous to CDC25 suppresses the cdc25-5 mutation in Saccharomyces cerevisiae. Gene 77: 2 1 -30 Broach, 1. R .. Deschenes, R. J. 1 990. The function of RAS genes in Saccharomyces cerevisiae. Adv. Cancer Res. 54: 79- 1 39 Brott, B. K . , Decker, S., Shafer, J., Gibbs, J. B., Jove, R. 1 99 1 . GTPase-activating protein interactions with the viral and cellular Src kinases. Proc. Natl. Acad. Sci. USA 88: 755-59 Brunger, A. T., Milburn, M. V., Tong, L., de Vos, A. M ., Jancarik, J., et al. 1 990. Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p2 1 catalytic domain. Proc. Natl. Acad. Sci. USA 87: 4849-53 Buchberg, A. M . , Cleveland, L. S., Jenkins, N. A., Copeland, N. G. 1 990. Sequence homology shared by neurofibromatosis type- I gene and IRA- 1 and IRA-2 nega­ tive regulators of the RAS cyclic AMP pathway. Nature 347: 29 1 -94 Burgering, B. M. T., Medema, R. H., Maassen, J. A., van de Wetering, M . L., van der Eb, A. J., et al. 1 99 1 . Insulin stimu­ lation of gene expression mediated by p2 1 "" activation. EMBO J. 1 0: l 1OJ-9 Burstein, E. S., Linko-Stentz, K . , Lu, Z., Macara, I . G. 1 99 1 . Regulation of the GTPase activity of the ras-like protein p2yabJA. J. Bioi. Chem. 266: 2689-92 Buss, J. E., Sefton, B. M. 1 986. Direct identi­ fication of palmitic acid as the lipid attached to p21,a,. Mol. Cell. Bioi. 6: 1 1 622 Buss, J. E., Solski, P. A., Schaeffer, J. P., MacDonald, M . J., Der, C J. 1 989. Acti­ vation of the cellular proto-oncogene product p21 Ras by addition of a myris­ tylation signal. Science 243: 1 600-3 Cai, H., Szeberenyi, J., Cooper, G. M . 1 990. Effect of a dominant inhibitory Ha-ras mutation on mitogenic signal trans­ duction in NIH 3T3 cells. Mol. Cell. BioI. 1 0: 5 3 1 4-23 Cales, C., Hancock, J. F., Marshall, C. J., Hall, A. 1 988. The cytoplasmic protein GAP is implicated as the target for regu-

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

ras PROTEINS

lation by the ras gene product. Nature 332: 548-5 1 Campa, M. J., Chang, K.-J., Molina y Vedia, L., Reep, B. R., Lapetina, E. G. 1 99 1 . Inhibition o f ras-induced germinal vesicle breakdown in Xenopus oocytes by rap- I B. Biochem. Biophys. Res. Commun. 1 74: 1-5 Casey, P. J., Solski, P. A., Der, C. J., Buss, J. E. 1 989. p2 1 ras is modified by a farnesyl isoprenoid. Proc. Natl. A cad. Sci. USA 86: 8323-27 Chant, J., Corrado, K . , Pringle, J. R., Hers­ kowitz, 1. 1 99 1 . Yeast BUDS, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection, and inter­ acts with bud formation gene BEM 1. Cell 65: 1 2 1 3-24 Chesa, P. G., Rettig, W. J., Melamud, M . R . , Old, L . J . , Nimam, H . L. 1 987. Expression of p21,a, in normal and malig­ nant human tissues: lack of association with proliferation and malignancy. Proc. Natl. A cad. Sci. USA 84: 3234-38 Chiarugi, V. P., M agnelli, L., Pasquali, F., Basi, G., Ruggiero, M . 1 989. Signal trans­ duction in EJ-H-ras-transformed cells: de novo synthesis of diacylglycerol and sub­ version of agonist-stimulated inositol lipid metabolism. FEBS Lett. 252: 1 29-34 Clarke, S., Vogel, .T. P., Deschenes, R . .T., Stock, J. 1 988. Posttranslational modi­ fication of the Ha-ras oncogene protein: evidence for a third class of protein car­ boxyl methyltransferases. Proc. Nat/. A cad. Sci. USA 85: 4643-47 Crechet, J.-B., Poullet, P., Mistou, M.-Y., Parmeggiani, A., Camonis, J., et al. 1 990. Enhancement of the GDP-GTP exchange of RAS proteins by the carboxyl-terminal domain of SCD2S. Science 248: 866-68 Damak, F., Boy-Marcotte, E., Le-Roscouet, D., Guilbaud, R., Jacquet, M. 1 99 1 . SDC25, a CDC25-like gene which con­ tains a RAS-activating domain and is a dispensable gene of Saccharomyces cere­ visiae. Mol. Cell. Bioi. I I : 202- 1 2 Dascher, c . , Ossig, R . , Gallwitz, D., Schmitt, H. D. 1 99 1 . Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPTl, a member of the RA S superfamily. Mol. Cell. BioI. 1 1 : 872-85 Deshpande, A. K., Kung, H. F. 1 987. Insulin induction of Xenopus laevis oocyte matur­ ation is inhibited by monoclonal antibody against p21 ras proteins. Mol. Cell. Bioi. 7: 1 285-88 de Vos, A. M., Tong, L., Milburn, M. V., Matias, P. M., Jancarik, J., et al. 1988. Three-dimensional structure of an onco­ gene protein: catalytic domain of human c-H-ras p2 1 . Science 239: 888-93 Diaz-Laviada, 1., Larrodera, P., Diaz-Meco,

625

T., Cornet, M. E., Guddal, P. H., et al. 1 990. Evidence for a role of phospha­ tidylcholine-hydrolysing phospholipase C in the regulation of protein kinase C by ras and src oncogenes. EMBO 1. 9: 390712 Diekmann, D., Brill, S., Garrett, M . D., Totty, N., Hsuan, J., et al. 1 99 1 . Bcr en­ codes a GTPase-activating protein for p21,ae. Nature 35 1 : 400-2 Downward, J., de Gunzburg, J., Riehl, R., Weinberg, R. A. 1 988. p21ras-induced responsiveness of phosphatidylinositol turnover to bradykinin is a receptor num­ ber effect. Proc. Natl. A cad. Sci. USA 85: 5774--78 Downward, J., Graves, J. D., Warne, P. R . , Rayter, S., Cantrell, D. A. 1 990a. Stimu­ lation of p2 1 ras upon T-cell activation. Nature 346: 7 1 9-23 Downward, J., Riehl, R., Wu, L., Weinberg, R. A. 1 990b. Identification of a nucleotide exchange-promoting activity for p 2 l ras. Proc. Natl. A cad. Sci. USA 87: 5998-6002 Ellis, c., Moran, M., McCormick, F., Pawson, T. 1990. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kin­ ases. Nature 343: 377-8 1 Emkey, R., Freedman, S., Chardin, P., Feig, L. A. 1 99 1 . Characterization of a GTPase activating protein for the ras-related ral protein. 1. Bioi. Chem. 266: 9703-6 Engelberg, D., Simchen, G., Levitzki, A. 1 990. In vitro reconstitution of CDC25 regulated S. cerevisiae adenylyl cyclase and its kinetic properties. EMBO 1. 9: 641 -5 1 Europe-Finner, G. N., Luderus, M. E. E., Small, N. V., Van Driel, R., Reymond, C. D., et aJ. 1 988. M utant ras gene induces elevated levels of inositol trisphosphate and hexakisphosphates in Dictyostelium. J. Cell Sci. 89: 1 3-20 Farnsworth, C. L., Marshall, M. S., Gibbs, J. B . , Stacey, D. W., Feig, L. A. 1 99 1 . Preferential inhibition o f the oncogenic form of RasH by mutations in the GAP­ bindingj"Effector" domain. Cell 64: 62533 Fedor-Chaiken, M . , Deschenes, R. J., Broach, J. R. 1990. SR V2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 61: 329-40 Feig, L. A., Cooper, G. M. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. BioI. 8: 3235-43 Feuerstein, J., Goody, R. S., Webb, M. R. 1 989. The mechanism of guanosine nucleotide hydrolysis by p21 c-Ha-ras. The stereochemical course of the GTPase reaction. 1. BioI. Chem. 264: 6 1 88-90

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

626

BOLLAG & McCORMICK

Feuerstein, J., Goody, R. S., Wittinghofer, A. 1987. Preparation and characterization of nucleotide-free and metal ion-free p2 1 "apoprotein." 1. BioI. Chem. 262: 845558 Field, J., Broek, D., Kataoka, T., Wigler, M . 1 987. Guanine nucleotide activation of, and competition between, RA S proteins from Saccharomyces cerevisiae. Mol. Cell. BioI. 7: 2 1 28-33 Field, J., Vojtek, A., Ballester, R., Bolger, G., Colicelli, J., et al. 1 990. Cloning and characterization of CA P, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase­ associated protein. Cell 61 : 3 1 9-27 Fiorucci, G., Hall, A. 1 988. All three human ras genes are expressed in a wide range of tissues. Biochim. Biophy�. Acta 950: 8 1-83 Fleischman, L. F., Chahwala, S. 8., Cantley, L. 1 986. Ras transformed cells: altered levels of phosphatidylinositol-4,5-bis­ phosphate and catabolites. Science 23 1 : 407-1 0 Franks, D. J., Durkin, J. P . , Whitfield, J. F. 1 989. Protein kinase C and a viral K-RAS protein cooperatively enhance the re­ sponse of adenylate cyclase to stimulators. 1. Cell Physiol. 1 40: 409-1 7

Frech,

M ., John, J., Pizon, V., Chardin, P.,

Tavitian, A., et a!. 1 990. Inhibition of GTPase activating protein stimulation of Ras-p2 1 GTPase by the Krev- l gene pro­ duct. Science 249: 1 69-7 1 Fujiyama, A., Tamanoi, F. 1 990. RA S2 pro­ tein of Saccharomyces cerevisiae under­ goes removal of methionine at N terminus and removal of three amino acids at C terminus. 1. Bioi. Chem. 265: 3362-68 Fukui, Y., Kozasa, T., Kaziro, Y., Takeda, T., Yamamoto, M. 1986. Role of a ras homolog in the life cycle of Schizo­ saccharomyces pombe. Cell 44; 329-36 Fukumoto, Y., Kaibuchi, K., Hori, Y., Fujioka, H., Araki, S., et al. 1 990. Molec­ ular cloning and characterization of a novel type of regulatory protein (GDI) for rho proteins, ras p21 -like small GTP-bind­ ing proteins. Oncogene 5: 1 32 1-28 Furth, M. E., Aldrich, T. H., Cordon-Cardo, C. 1 987. Expression of ras proto-oncogene proteins in normal human tissues. Onco­ gene 1 ; 47-58 Garreau, H . , Camonis, J. H., Guitton, c., Jacquet, M . 1 990. The Saccharomyces cerevisiae CDC25 gene product is a 1 80 kDa polypeptide and is associated with a membrane fraction. FEBS Lett. 269: 5359 Garrett, M. D., Self, A. J., van Oers, c., Hall, A. 1 989. Identification of distinct cytoplasmic targets for rasjR-ras and rho regulatory proteins. 1. Bioi. Chem. 264: 1 0- 1 3

Gauthier-Rouviere, c . , Fernandez, A., Lamb, N. J. 1 990. ras-induced c-fos expression and proliferation in living rat fibroblasts involves C-kinase activation and the serum response element pathway. EMB0 1. 9: 1 7 1-80 Gibbs, J. B., Marshall, M . S. 1989. The ras oncogene-an important regulatory ele­ ment in lower eucaryotic organisms. Micro­ bial. Rev. 53: 1 7 1 -85 Gibbs, J. B., Marshall, M . S., Scolnick, E. M., Dixon, R. A., Vogel, U . S. 1 990. Modulation of guanine nucleotides bound to Ras in N1H3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). 1. Bioi. Chem. 265: 2043742 Gibbs, J. B., Schaber, M. D., Allard, W. J., Sigal. I . S., Scolnick, E. M . 1 988. Puri­ fication of ras GTPase activating protein from bovine brain. Proc. Natl. A cad. Sci. USA 85: 5026-30 Gibbs, J. 8., Schaber, M. D., Marshall, M . S . , Scolnick, E . M . , Sigal, I . S . 1 987. Identification of guanine nucleotides bound to ras-encoded proteins in growing yeast cells. 1. Bioi. Chem. 262: 10426-29 Gibbs, J. B., Schaber, M. D., Schofield, T. L., Scolnick, E . M., Sigal, 1. S. 1 989. Xeno­ pus oocyte germinal-vesicle breakdown induced by [Va1 1 2] Ras is inhibited by a cytosol-localized Ras mutant. Proc. Natl. Acad. Sci. USA 86: 6630-34 Gilman, A. G. 1 987. G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 56: 6 1 5-49 Goodman, L. E., Judd, S. R., Farnsworth, C. C., Powers, S., Gelb, M. H . , et al. 1 990. Mutants of Saccharomyces cerevisiae defective in the farnesylation of Ras pro­ teins. Proc. Natl. A cad. Sci. USA 87: 966569 Gutierrez, L., Magee, A. I., Marshall, C. J., Hancock, J. F. 1 989. Post-translational processing of p2 1 '� is two-step and involves carboxyl-methylation and carboxy-ter­ minal proteolysis. EMBO 1. 8: 1 093-98 Hagag, N., Halegoua, S., Viola, M. 1 986. Inhibition of growth factor-induced differentiation of PC 1 2 cells by micro­ injection of antibody to ras p21 . Nature 3 1 9: 680-82 Hagag, N., Lacal, J. c., Graber, M . , Aaron­ son, S., Viola, M. 1 987. Microinjection of rasp21 induces a rapid rise in intracellular pH. Mol. Cell. BioI. 7: 1 984-88 Halenbeck, R., Crosier, W. J., Clark, R., McCormick, F., Koths, K . 1 990. Puri­ fication, characterization, and western blot analysis of human GTPase-activating protein from native and recombinant sources. 1. Bioi. Chem. 265: 2 1 922-28 Hall, A. 1990. The cellular functions of small

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

ras PROTEINS

GTP-binding proteins. Science 249: 63540 Han, J.-W., McCormick, F., Macara, 1. G. 1 99 1 . Regulation of Ras-GAP and the neurofibromatosis-I gene product by eico­ sanoids. Science 252: 576--79 Han, M . , Sternberg, P. W. 1 990. let-60, a gene that specifies cell fates during C. ele­ gans vulval induction, encodes a ras protein. Ce/l 63: 921-3 1 Hancock, 1 . F., Magee, A . I . , Childs, 1 . E., Marshall, C. J. 1 989. All ras proteins are polyisoprenylated but only some are pal­ mitoylated. Cell 57: 1 1 67-77 Hancock, J. F., Marshall, C. J., McKay, I . A., Gardner, S . , Houslay, M. D., e t al. 1 988. Mutant but not normal p2 1 ras ele­ vates inositol phospholipid breakdown in two different cell systems. Oncogene 3 : 1 87-93 Hata, Y., Kikuchi, A., Sasaki, T., Schaber, M. D., Gibbs, J. B., Takai, Y. 1 990. Inhi­ bition of the ras p21 GTPase-activating protein-stimulated GTPase activity of c­ Ha-ras p21 by smg p21 having the same putative effector domain as ras p2 I s. 1. Bioi. Chem. 265: 7 1 04-7 Hiroyoshi, M., Kaibuchi, K., Kawamura, S., Hata, Y., Takai, Y. 199 1 . Role of the C­ terminal region of smg p21 , a ras p2 1 -li ke small GTP-binding protein, in membrane and smg p2 1 GDP/GTP exchange protein interactions. 1. Bioi. Chem. 266: 2962-69 Hoshino, M., Kawakita, M., Hattori, S. 1 988. Characterization of a factor that stimulates hydrolysis of GTP bound to ras gene product p21 (GTPase-activating protein) and correlation of its activity to cell density. Mol. Cell. Bioi. 8: 4 1 6973 Hsiao, W.-L. W., Gattoni-Celli, S., Weinstein, I . B. 1 984. Oncogene-induced transformation of C3H IOT I /2 cells is enhanced by tumor promoters. Science 226: 552-55

Hsiao, W.-L. W., Housey, G. M . , Johnson, M. D., Weinstein, I. 8 . 1 989. Cells that overproduce protein kinase C are more susceptible to transformation by an acti­ vated H-ras oncogene. Mol. Cell. Bioi. 9: 2641-47 Hsieh, C. L., Vogel, U . S., Dixon, R. A., Francke, U . 1 989. Chromosome local­ ization and cDNA sequence of murine and human genes for ras p2 1 GTPase acti­ vating protein (GAP). Somal. Cell Malec. Genet. 1 5: 579-90 Huang, M . , Chida, K., Kamata, N., Nose, K., Kato, M., et al. 1 988. Enhancement of inositol phospholipid metabolism and acti­ vation of protein kinase C in ras-trans­ formed rat fibroblasts. 1. Bioi. Chem. 263: 1 7975-80

627

Huang, Y. K., Kung, H.-F., Kamata, T. 1 990. Purification of a factor capable of stimulating the guanine nucleotide ex­ change reaction of ras proteins and its effect on ras-related small molecular mass G proteins. Proc. Natl. Acad. Sci. USA 87: 8008-1 2 Hughes, D . A., Fukui, Y., Yamamoto, M . 1 990. Homologous activators of ras in fis­ sion and budding yeast. Nature 344: 35557 Imai, Y., Miyake, S., Hughes, D. A., Yama­ moto, M. 199 1 . Identification ofa GTPase­ activating protein homolog in Schizo­ saccharomyces pombe. Mol. Cell. Bioi. I I : 3088-94 Isomura, M., Kikuchi, A., Ohga, N., Takai, Y. 1 99 1 . Regulation of binding of rhoB p20 to membranes by its specific regu­ latory protein, GDP dissociation inhibi­ tor. Oncogene 6: 1 19-24 John, J., Sohmen, R., Feuerstein, J., Linke, R., Wittinghofer, A., Goody, R. S. 1 990. Kinetics of interaction of nucleotides with nucleotide-free H-ras p2 1 Biochemistry 29: 6058-65 Johnson, A. D., Cork, R. J., Williams, M . A . , Robinson, K. R . , Smith, L . D . 1 990. H- rasVa1 l 2 induces cytoplasmic but not nuclear events of the cell cycle in small Xenopus oocytes. Cell Regul. I: 543-54 Jones, S., Vignais, M.-L., Broach, J. R. 1 99 1 . The CDC25 protein o f Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to ras. Mol. Cell. Bioi. I I : 2641-46 Kaplan, D. R., Morrison, D. K., Wong, G., McCormick, F., Williams, L. T. 1 990. PDGF fJ-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell 6 1 : 1 25-33 Kaplan, D. R., Whitman, M., Schaffhausen, 8., Pallas, D., White, M . , et al. 1 987. Com­ mon elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50: 1 02 1 -29 K awata, M . , Matsui, Y., Kondo, J., Hishida, T., Teranishi, Y . , Takai, Y. 1 988. A novel small molecular weight GTP-binding pro­ tein with the same putative effector domain as the ras proteins in bovine brain membranes. 1. Bioi. Chem. 263: 1 8965-7 1 Kazlauskas, A., Ellis, C., Pawson, T., Cooper, J. A. 1 990. Binding of GAP to activated PDGF receptors. Science 247: 1 578-8 1 Kikuchi, A., Sasaki, T., Araki, S., Hata, Y., Takai, Y . 1 989. Purification and charac­ terization from bovine brain cytosol of two GTPase-activating proteins specific for smg p2 I, a GTP-binding protein hav.

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

628

BOLLAG & McCORMICK

ing the same effector domain as c-ras p2ls. J. Bioi. Chern. 264: 9 1 3 3-36 Kitayama, H . , Matsuzaki, T., Ikawa, Y., Noda, M . 1 990. Genetic analysis of the Kirsten-ras-revertant I gene: Potentiation of its tumor suppressor activity by specific point mutations. Proc. Natl. A cad. Sci. USA 87: 4284-88 Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., Noda, M. 1 989. A ras-related gene with transformation suppressor activity. Cell 56: 77-84 Korn, L. J., Siebel, C. W . , McCormick, F., Roth, R. A. 1 987. Ras p2 1 as a potential mediator of insulin action in Xenopus oocytes. Science 236: 840-43 Krengel, U., Schlichting, L., Scherer, A., Schumann, R., Frech, M., et al. 1 990. Three-dimensional structures ofH-ras p2 1 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62: 539-48 Kung, H.-F., Smith, M. R., Bekesi, E., Manne, V., Stacey, D. W. 1 986. Reversal of transformed phenotype by monoclonal antibodies against Ha-ras p 2 1 proteins. Exp. Cell Res. 1 62: 363-7 1 Lacal, J. C. 1 990. Diacylglycerol production in Xenopus laevis oocytes after micro­ injection of p21 ras proteins is a conse­ quence of activation of phosphatidyl­ choline metabolism. Mol. Cell. Bioi. 1 0 : 333-40 Lacal, J. c., De la Pena, P., Moscat, J., Garcia-Barreno, P., Anderson, P. S., Aaronson, S. A. 1 987a. Rapid stimulation of diacylglycerol production in Xenopus oocytes by microinjection of H-ras p2 1 . Science 238: 533-36 Lacal, J. c., Fleming, T. P., Warren, B. S., Blumberg, P. M . , Aaronson, S. A. 1 987b. Involvement of functional protein kinase C in the mitogenic response to the H-ras oncogene product. Mol. Cell. Bioi. 7: 4 146-49 Lacal, J. C., Moscat, J., Aaronson, S. A. 1 987c. Novel source of 1 ,2-diacylglycerol elevated in cells transformed by Ha-ras oncogene. Nature 330: 269-72 Lacal, P. M . , Pennington, C. Y., Lacal, J. C. 1 988. Transforming activity of ras pro­ teins translocated to the plasma mem­ brane by a myristoylation sequence from the src gene product. Oncogene 2: 533-37 Lemons, R. S., Espinosa, R. III, Rebentisch, M . , McCormick, F., Ladner, M . , Le Beau, M. M. 1 990. Chromosomal localization of the gene encoding GTPase-activating protein (RASA) to human chromosome 5, bands q I 3-qI 5 . Genornics 6: 383-85 Leon, J., Guerrero, T., Pellicer, A. 1 987. Different expression of the ras gene family in mice. Mol. Cell. Bioi. 7: 1 535-40

Lloyd, A. c., Paterson, H. F., Morris, J. D., Hall, A., Marshall, C. J. 1 989. p21 H-ras­ induced morphological transformation and increases in c-rnyc expression are inde­ pendent of functional protein kinase C. EMBO J. 8: 1 099-1 1 04 Lopez-Barahona, M., Kaplan, P. L., Cornet, M. E., Diaz-Meco, M. T., Larrodera, P., et al. 1 990. Kinetic evidence of a rapid activation of phosphatidylcholine hydrolysis by Ki-ras oncogene. Possible involvement in late steps of the mitogenic cascade. J. Bioi. Chern. 265: 9022-26 Luderus, M. E. E., Reymond, C. D., Van Haastert, P. J. M . , Van Oriel, R. 1988. Expression of a mutated ras gene in Dictvosteliurn discoideurn alters the bind­ ing o f cyclic AMP to its chemotactic recep­ tor. J. Cell Sci. 90: 701-6 Macara, I . G. 1 989. Elevated phospho­ choline concentration in ras-transformed NIH 3T3 cells arises from increased cho­ line kinase activity, not from phos­ phatidylcholine breakdown. Mol. Cell. Bioi. 9: 325-28 Magee, A. I . , Gutierrez, L., McKay, 1. A., Marshall, C. J., Hall, A. 1 987. Dynamic fatty acylation of p2 I N-ras. EMBO J. 6: 3353 57

Maly, D., Doppler, W., Oberhuber, H., Meusburger, H., Hofmann, J., et al. 1 988. Desensitization of the Ca 2 + -mobilizing system to serum growth factors by Ha-ras and v-m os. Mol. Cell. Bioi. 8: 42 1 2- [ 6 Margolis, B . , Li, N . , Koch, A . , Mohammadi, M., Hurwitz, D. R., et al. 1 990. The tyro­ sine phosphorylated carboxy terminus of the EGF receptor is a binding site for GAP and PLC-y. EMBO J. 9: 4375-80 Margolis, B., Rhee, S. G., Felder, S., Mervic, M . , Lyall, R., et al. 1 989. EGF induces tyrosine phosphorylation of phospho­ lipase C-II: a potential mechanism for EGF receptor signaling. Ce1/ 57: 1 1 0 1 -7 Marshall, M. S., Hill, W. S., Ng, A. S., Vogel, U. S., Schaber, M . D., et al. 1 989. A C-terminal domain of GAP is sufficient to stimulate ras p21 GTPase activity. EMBO J. 8: 1 105- 1 0 Martin, G. A . , Viskochil, D . , Bollag, G., McCabe, P. c., Crosier, W. J., et al. 1 990. The GAP-related domain of the neuro­ fibromatosis type I gene product interacts with ras p2 1 . Cell 63: 843-49 Matsui, Y., Kikuchi, A., Araki, S., Hata, Y., Kondo, J., et al. 1 990. Molecular cloning and characterization of a novel type of regulatory protein (GO I) for srng p2 1 A, a ras p2 1 -like GTP-binding protein. Mol. Cell. Bioi. 1 0: 4 1 1 6-22 Mayer, B. J., Jackson, P. K., Baltimore, D. 1 99 1 . The noncatalytic src homology region 2 segment of abl tyrosine kinase

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

ras PROTEINS

binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc. Natl. Acad. Sci. USA 88: 627-3 1 McCormick, F., Adari, H., Trahey, M . , Halenbeck, R . , Koths, K . , e t a l . 1 988. Interaction of ras p21 proteins with GTPase activating protein. Cold Spring Harbor Symp. Quant. BioI. 2: 849-54 Meisenhelder, J., Suh, P.-G., Rhee, S. G., Hunter, T. 1989. Phospholipase C-l' is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57: 1 109-22 Michaeli, T., Field, J., Ballester, R., O'Neill, K., Wigler, M. 1 989. M utants of H-ras that interfere with RAS effector function in Saccharomyces cerevisiae. EMBO J. 8: 3039-44 Milburn, M . V., Tong, L., de Vos, A. M., Briinger, A., Yamaizumi, Z., et al. 1990. Molecular switch for signal transduction: Structural differences between active and inactive forms of protooncogenic ras pro­ teins. Science 247: 939-45 Molloy, C. J., Bottaro, D. P., Fleming, T. P., Marshall, M. S., Gibbs, 1. B., Aaron­ son, S. A. 1 989. PDGF induction of tyro­ sine phosphorylation of GTPase acti­ vating protein. Nature 342: 7 1 1-14 Moran, M . F., Koch, C. A., Anderson, D., Ellis, c., England, L., et al. 1990. Src hom­ ology region 2 domains direct protein­ protein interactions in signal transduction. Proc. Natl. A cad. Sci. USA 87: 8622-26 Morris, J. D., Price, B . , Lloyd, A. C., Self, A. J., Marshall, C. J., Hall, A. 1 989. Scrape­ loading of Swiss 3T3 cells with ras protein rapidly activates protein kinase C in the absence of phosphoinositide hydrolysis. Oncogene 4: 27-3 1 Morrison, D. K., Kaplan, D. R., Escobedo, J. A., Rapp, U. R., Roberts, T. M ., Wil­ liams, L. T. 1 989. Direct activation of the serine/threonine kinase activity of Raf- l through tyrosine phosphorylation by the PDGF �-receptor. Cell 58: 649-57 Mulcahy, L. S., Smith, M . R., Stacey, D. W. 1 985. Requirements for ras proto-onco­ gene function during serum-stimulated growth of NIH3T3 cells. Nature 3 13 : 241 43 Nadin-Davis, S. A., Nasim, A. 1 988. A gene which encodes a predicted protein kinase can restore some functions of the ras gene in fission yeast. EMBO J. 5: 985-93 Nadin-Davis, S. A., Nasim, A., Beach, D. 1 986. Involvement of ras i n sexual differ­ entiation but not in growth control in fis­ sion yeast Schizosaccharomyces pombe. EMBO J. 5: 2963-72 Neal, S. E., Eccleston, J. F., Hall, A., Webb, M. R. 1 988. Kinetic analysis of the hydrolysis ofGTP by p2IN-ras. The basal

629

GTPase mechanism. J. Bioi. Chern. 263: 1 9 7 1 8-22 Neal, S. E., Eccleston, J. F., Webb, M . R. 1 990. Hydrolysis of GTP by p 2 1 NRAS, the NRAS protooncogene product, is accompanied by a conformational change in the wild-type protein: use of a single fluorescent probe at the catalytic site. Proc. Natl. Acad. Sci. USA 87: 3562-65 Nishibe, S., Wahl, M . I . , Hernandez-Soto­ mayor, S. M. T., Tonks, N. K., Rhee, S. G., Carpenter, G. 1990. Increase of the catalytic activity of phospholipase C-y 1 by tyrosine phosphorylation. Science 250: 1 253-56 Olsen, E. N., Spizz, G., Tainsky, M. A. 1 987. The oncogenic forms of N-ras and H-ras prevent skeletal myoblast differentiation. Mol. Cell. Bioi. 7: 2 1 04-1 1 Owen, R. D., Ostrowski, M . C. 1 987. Rapid and selective alterations in the expression of cellular genes accompany conditional transcription of Ha-v-ras in NIH 3T3 cells. Mol. Cell. Bioi. 7: 25 1 2-20 Pai, E. F., Kabsch, W., Krengel, U . , Holmes, K. C., John, 1., Wittinghofer, A. 1 989. Structure of the guanine-nucleotide-bind­ ing domain of the Ha-ras oncogene pro­ duct p2 1 in the triphosphate confor­ mation. Nature 341: 209-14 Pai, E. F., Krengel, U., Petsko, G. A., Goody, R. S., Kabsch, W., Wittinghofer, A. 1 990. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1 .35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 9: 235 1 -59 Pan, B.-T., Cooper, G. M. 1 990. Role of phosphatidylinositide metabolism in ras­ induced Xenopus oocyte maturation. Mol. Cell. Bioi. 1 0: 923-29 Parries, G., Hoebel, R., Racker, E. 1 987. Opposing effects of a ras oncogene on growth factor-stimulated phosphoino­ sitide hydrolysis: desensitization to plate­ let-derived growth factor and enhanced sensitivity to bradykinin. Proc. Natl. A cad. Sci. USA 84: 2648-52 Pizon, V., Chardin, P., Lerosey, I., Olofsson, B., Tavitian, A. 1 988. Human cDNAs rapl and rap2 homologous to the Droso­ phila gene Dras3 encode proteins closely related to ras in the "effector" region. Oncogene 3: 201-4 Polakis, P. G., Rubinfeld, B., Evans, T., McCormick, F. 1 99 1 . Purification of a plasma membrane-associated GTPase­ activating protein specific for rapl/Krev- I from H L60 cells. Proc. Natl. Acad. Sci. USA 88: 239-43 Powers, S., O'Neill, K., Wigler, M. 1 989. Dominant yeast and mammalian RAS mutants that interfere with the CDC25-

630

BOLLAG & McCORMICK

dependent activation of wild-type RAS in

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

Saccharornyces cerevisiae. Mol. Cell. Bioi.

9: 390-95 Preiss, 1 . , Loomis, C R., Bishop, W. R., Stein, R., Niedel, 1 . E., Bell, R. M . 1 986. Quantitative measurement of sn- I ,2-dia­ cylglycerols present in platelets, hepato­ cytes, and ras- and sis-transformed normal rat kidney cells. J. Bioi. Chern. 26 1 : 85978600 Price, B. D., Morris, 1. D., Marshall, C 1., Hall, A. 1 989. Stimulation of phos­ phatidylcholine hydrolysis, diacylglycerol release, and arachidonic acid production by oncogenic ras is a consequence of pro­ tein kinase C activation. J. Bioi. Chern. 264: 1 6638-43 Quinn, M. T., Parkos, C. A., Walker, L., Orkin, S. H . , Dinauer, M. C , lesaitis, A. 1 . 1 989. Association ofa Ras-related protein with cytochrome b of human neutrophils. NllIure 342: 198-200 Reedijk, M . , Liu, X . Q., Pawson, T. 1 990. Interactions of phosphatidylinositol kin­ ase, GTPase-activating protein (GAP), and GAP-associated proteins with the col­ ony-stimulating factor 1 receptor. Mol. Cel/. Bioi. 10: 560 1-8 Reiss, Y., Goldstein, J. L., Sea bra, M. c., Casey, P. 1., Brown, M. S. 1 990. Inhibition of purified p2 1 ras farnesyl: protein trans­ ferase by Cys-AAX tetrapeptides. Cell 62: 8 1-88 Resh, M. D., Ling, H.-P. 1990. Identification of a 32K plasma membrane protein that binds to the myristylated amino-terminal sequence of p60v-src. Nature 346: 8486 Resnick, R. 1., Racker, E. 1988. Phos­ phorylation of the RAS2 gene product by protein kinase A inhibits the activation of yeast adenylyl cyclase. Proc. Natl. A cad. Sci. USA 85: 2474-78 Rey, 1., Soubigou, P., Debussche, L., David, C, Morgat, A., et al. 1 989. Antibodies to synthetic peptide from the residue 33 to 42 domain of c-Ha-ras p21 block recon­ stitution of the protein with different effectors. Mol. Cell. Bioi. 9: 3904-1 0 Reynolds, S . H . , Stowers, S . 1., Patterson, R. M., Maronpot, R. R., Aaronson, S. A., Anderson, M . W. 1 987. Activated onco­ genes in B6C3 F I mouse liver tumors: implications for risk assessment. Science 237: 1 309- 1 6 Rubinfeld, B . , Munemitsu, S . , Clark, R . , Conroy, L . , Watt, K . , e t al. 1 99 1 . Molec­ ular cloning of a GTPase-activating pro­ tein specific for the Krev- I protein p2 1 '"P '. Cell 65: 1 033-42 Santos, E., Nebreda, A. R. 1 989. Structural and functional properties of ras proteins. FA SEB J. 3: 2 1 5 1 -63

Sasaki, T., Kikuchi, A., Araki, S., Hata, Y., Isomura, M., et al. 1 990. Purification and characterization from bovine brain cyto­ sol of a protein that inhibits dissociation of GDP from and the subsequent binding of GTP to srng p25A, a ras p2 1 -like GTP­ binding protein. J. Bioi. Chern. 265: 233337 Satoh, T., Endo, M., Nakafuku, M . , Akiyama, T . , Yamamoto, T . , Kaziro, Y . 1990a. Accumulation of p2 1 "" GTP i n response t o stimulation with epidermal growth factor and oncogene products with tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 87: 7926-29 Satoh, T., Endo, M . , Nakafuku, M., Naka­ mura, S., Kaziro, Y. 1 990b. Platelet­ derived growth factor stimulates for­ mation of active p2 1 '"' GTP complex in Swiss mouse 3T3 cells. Proc. Natl. A cad. Sci. USA 87: 5993-97 Satoh. T., Nakamura, S., Kaziro, Y. 1 987. Induction of neurite formation in PC I 2 cells by microinjection o f proto-oncogenic Ha-ras protein preincubated with guano­ sine-S' -O-(3-thiotriphosphate). Mol. Cell. Bioi. 7: 4553-56 Schaber, M. D., Garsky, V. M., Boylan, D., Hill, W. S., Sco1nick, E. M . , et a l . 1 989. Ras interaction with the GTPase-acti­ vating protein (GAP). Proteins 6: 30615 Schaber, M. D . , O'Hara, M. B . , Garsky, V. M., Mosser, S. D., Bergstrom, 1 . D., et al. 1 990. Polyisoprenylation of ras in vitro by a farnesyl-protein transferase. J. BioI. Chern. 265: 1 470 1 -4 Schafer, W. R., Kim, R., Sterne, R., Thorner, 1., Kim, S. H., Rine, 1. 1 989. Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. Science 245: 379-85 Schafer, W. R., Trueblood, C. E., Yang, C e., Mayer, M. P., Rosenberg, S., et al. 1 990. Enzymatic coupling of cholesterol intermediates to a mating pheromone pre­ cursor and to the ras protein. Science 249: 1 1 33-39 Schlichting, 1., Almo, S. C, Rapp, G., Wilson, K., Petratos, K., et al. 1 990. Time­ resolved X-ray crystallographic study of the conformational change in Ha-Ras 1'2 1 protein on GTP hydrolysis. Nature 345: 309- 1 5 Seuwen, K . , Lagarde, A., Pouyssegur, 1 . 1 988. Deregulation o f hamster fibroblast proliferation by mutated ras oncogenes is not mediated by constitutive activation of phosphoinositide-specific phospholipase C. EMBO J. 7: 1 6 1-68 Sigal, I. S., Gibbs, 1. B . , D'Alonzo, 1. S., Scolnick, E. M. 1 986a. Identification of effector residues and a neutralizing epitope

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

ras PROTEINS

of Ha-ras-encoded p2 1 . Proc . Natl. A cad. Sci. USA 83: 4725-29 Sigal, ! . S., Gibbs, J. B., D'Alonzo, J. S . , Temeles, G. L., Wolanski, B. S . , e t al. 1 986b. Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effects. Proc . Natl. A cad. Sci. USA 83: 952-56 Sistonen, L., Holtta, E., Makela, T. P . , Keski-Oja, J., Alitalo, K . 1 989. The cellu­ lar response to induction of the p2 1 c-H­ ras oncoprotein includes stimulation of jun gene expression. EMBO J. 8: 8 1 522 Smith, L. D. 1989. The induction of oocyte maturation: transmembrane signaling cvcnts and rcgulation of the cell cycle. Development 1 07 : 685-99 Smith, M . R . , DeGudicibus, S. J . , Stacey, D . W . 1 986. Requirement for c-ras proteins during viral oncogerie transformation. Nature 320: 540-43 Smith, M. R., Liu, Y.-L., Kim, H . , Rhee, S . G., Kung, H. - F. 1 990. Inhibition of serum- and ras-stimulated DNA synthesis by antibodies to phospholipase C . Science 247: 1 074-77 Smith, M. R., Ryu, S.-H., Suh, P.-G., Rhee, S. G . , Kung, H.-F. 1 989. S-phase induc­ tion and transformation of quiescent NIH 3T3 cells by microinjection of phos­ pholipase C. Proc. Natl. A cad. Sci. USA 86: 3659--63 Srivastava, S. K . , Di Donato, A . , Lacal, J. C. 1 989. H-ras mutants lacking the epitope for the neutralizing monoclonal antibody Y 1 3-259 show decreased biological ac­ tivity and are deficient in GTPase-acti­ vating protein interaction. Mol. Cell. Bioi. 9: 1 779-83 Stacey, D. W . , Watson, T., Kung, H.-F. , Curran, T. 1 987. Microinjection of trans­ forming ras protein induces c-fos expression. Mol. Cell. Bioi. 7: 523-27 Stocchi, V., Cucchiarini, L . , Canestrari, R ., Piacentini, M . P., Fornaini, G . 1 987. A very fast ion-pair revcrsed-phase HPLC method for the separation of the most sig­ nificant nucleotides and their degradation products in human red blood cells. Anal. Biochem. 1 67: 1 8 1 -90 Stryer, L., Bourne, H. R. 1986. G proteins: A family of signal transducers. Annu. Rev. Cell Bioi. 2: 3 9 1 -4 1 9 Sugimoto, Y., Noda, M . , Kitayama, H . , lkawa, Y . 1 988. Possible involvement o f two signaling pathways in induction o f neuron-associated properties by v-Ha-ras gene in PC l 2 cells. J. Bioi. Chern. 263: 1 2 1 02-8 Swanson, M . E., Elste, A. M . , Greenberg, J . H . , Schwartz, J. H . , Aldrich, T. H . , Furth, M. E. 1 986. Abundant expression of ras

63 1

proteins in Aplysia neurons. J. Cell BioI. 1 03 : 485-92 Szeberenyi, J., Cai, H . , Cooper, G. M. 1 990. Effect of a dominant inhibitory Ha-ras mutation on neuronal differentiation of PC I 2 cells. Mol. Cell. BioI. 1 0: 5324-32 Tamanoi, F . , Hsueh, E. c., Goodman, L. E., Cobitz, A. R . , Detrick, R . J. , et al. 1 988. Posttranslational modification of ras pro­ teins: detection of a modification prior to fatty acid acylation and cloning of a gene responsible for the modification. J. Cell. Biochem. 36: 26 1-73 Tanaka, K., Lin, B. K., Wood, D. R . , Tamanoi, F . 1 99 1 . IRA2, a n upstream negative regulator of RAS in yeast, is a RAS GTPase-activating protein. Proc. Natl. A cad. Sci. USA 88: 468-72 Tanaka, K . , M atsumoto, K . , Toh-e, A. 1 989. IRA I, an inhibitory regulator of the RAS­ cyclic A M P pathway in Saccharomyces cerevisiae. Mol. Cell. BioI. 9: 7 57-68 Tanaka, K . , Nakafuku, M . , Satoh, T., Mar­ shall, M. S., Gibbs, J. B., et al. 1 990a. S. cerevisiae genes IRAI and IRA2 encode proteins that may be functionally equi­ valent to mammalian ras GTPase acti­ vating protein. Cell 60: 803-7 Tanaka, K . , Nakafuku, M . , Tamanoi, F., Kaziro, Y . , M atsumoto, K., Toh-e, A. 1 990b. IRA2, a second gene of Sac­ charomyces cerevisiae that encodes a pro­ tein with a domain homologous to mam­ malian ras GTPase-activating protein. Mol. Cell. Bioi. 1 0: 4303- 1 3 Tarpley, W . G., Hopkins. N . K., Gorman, R. R. 1986. Reduced hormone-stimulated adenylate cyclase activity in NIH 3T3 cells expressing the EJ human bladder ras oncogene. Proc. Natl. A cad. Sci. USA 83: 3703-7 Teegarden, D., Taparowsky, E. J. , Kent, C. 1 990. Altered phosphatidylcholine meta­ bolism in C 3 H I OT I /2 cells transfected with the Harvey-ras oncogene. J. Bioi. Chern. 265: 6042-47 Tong, L . , de Vos, A. M . , Milburn, M . V., Jancarik, J. , Noguchi, S., et al. 1 989. Structural differences between a ras onco­ gene protein and the normal protein. Nature 337: 90-93 Trahey, M., McCormick, F. 1987. A cyto­ plasmic protein stimulates normal N-ras p2 1 GTPase, but does not affect oncogenic mutants. Science 238: 542-45 Trahey, M . , Wong, G., Halenbeck, R . , Rubinfcld, B., Martin, G. A . , e t al. 1 988. Molecular cloning of two types of GAP complementary DNA from human pla­ centa. Science 242: 1 697-1 700 Tsai, M.-H., Hall, A . , Stacey, D. W. 1 989a. Inhibition by phospholipids of the inter­ action between R- ras, rho, and their

Annu. Rev. Cell. Biol. 1991.7:601-632. Downloaded from www.annualreviews.org Access provided by University of Adelaide on 12/10/14. For personal use only.

632

BOLLAG & McCORMICK

GTPase-activating proteins. Mol. Cell. Bioi. 9: 5260-64 Tsai, M .-H., Yu, C.-L., Stacey, D. W. 1 990. A cytoplasmic protein inhibits the GTPase activity of H-Ras in a phospholipid­ dependent manner. Science 250: 982-85 Tsai, M.-H., Yu, C.-L., Wei, F.-S., Stacey, D. W. 1 989b. The effect of GTPase activating protein upon ras is inhibited by mito­ genically responsive lipids. Science 243: 522-26 Veda, T., Kikuchi, A., Ohga, N., Yamamoto, J . , Takai, Y. 1 989. GTPase activating proteins for the smg-2 1 GTP­ binding protein having the same effector domain as the ras proteins in human plate­ lets. Biochem. Biophys. Res. Commun. 1 59: 141 1-19 Veda, T., Kikuchi, A . , Ohga, N., Yamamoto, J., Takai, Y. 1 990. Puri­ fication and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding pro­ tein. J. Bioi. Chem. 265: 9373-80 Van Haastert, P. J. M., Kesbeke, F., Reymond, C. D., Firtel, R. A., Luderus, E., Van Drie1, R. 1 987. Aberrant trans­ membrane signal transduction in Dictyo­ stelium cells expressing a mutated ras gene. Proc. Natl. Acad. Sci. USA 84: 4905-9 Vogel, V. S., Dixon, R. A., Schaber, M. D., Diehl, R. E .. Marshall, M. S., et al. 1988. Cloning of bovine GAP and its interaction with oncogenic ras p2 1 . Nature 335: 9093 Wahl, M . I . , Olashaw. N. E., Nishibe, S., Rhee, S. G., Pledger, W. J., Carpenter, G. 1 989. Platelet-derived growth factor induces rapid and sustained tyrosine phos­ phorylation of phospholipase C-y in quiescent BALB/c 3T3 cells. Mol. Cell. Bioi. 9: 2934--43 Wakelam, M. J. 0., Davies, S. A., Houslay, M. D., McKay, I . , Marshall, C. J . , Hall, A. 1986. Normal p2 1 N-ras couples bombesin and other growth factor receptors to inosi­ tol phosphate production. Nature 323: 1 73-76 West, M., Kung, H .-F., Kamata, T. 1 990. A novel membrane factor stimulates guanine nucleotide exchange reaction of ras proteins. FEBS Lett. 259: 245-48 White, T. E., Lacal, J. c., Reep, B., Fischer, T. H ., Lapetina, E. G., White, G. C. II. 1 990. Thrombolamban, the 22-kDa plate­ let substrate of cyclic AMP-dependent protein kinase, is immunologically hom-

ologous with the Ras family of GTP­ binding proteins. Proc. Natl. A cad. Sci. USA 87: 758-62 Wickner, R. 8., Koh, T. J., Crowley, J. C., O'Neil, J. , Kaback, D. B. 1 987. M olecular cloning of chromosome I DNA from Sac­ charomyces cerevisiae: isolation of the MAK I 6 gene and analysis of an adjacent gene essential for growth at low tem­ perature. Yeast 3: 5 1 -57 Wolfman, A., Macara, I. G. 1987. Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-trans­ formed fibroblasts. Nature 325: 359-61 Wolfman, A., M acara, I. G. 1 990. A cyto­ solic protein catalyzes the release of GDP from p2 1 '=. Science 248: 67-69 Xu, G. F., Lin, 8., Tanaka, K., Dunn, D., Wood, D., et al. 1 990a. The catalytic domain of the neurofibromatosis type I gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63: 835-41 Xu, G. F., O'Connell, P., Viskochil, D., Cawthon, R., Robertson, M., et al. 1 990b. The neurofibromatosis type I gene en­ codes a protein related to GAP. Cell 62: 599--608 Yamaguchi-Iwai, Y., Satake, M . , Mura­ kami, Y., Sakai, M., Muramatsu, M . , Ito, Y. 1 990. Differentiation of F9 embryonal carcinoma cells induced by the c-jun and activated c-Ha-ras oncogenes. Proc. Nat/. Acad. Sci. USA 87: 8670-74 Yamamoto, J., Kikuchi, A., Veda, T., Ohga, N., Takai, Y. 1990. A GTPase-activating protein for rhoB p20, a ras p2 1 -1ike GTP­ binding protein-partial purification, char­ acterization and subcellular distribu­ tion in rat brain. Brain Res. 8: 1 05-1 I Yatani, A., Okabe, K., Polakis, P., Halen­ beck, R., McCormick, F., Brown, A. M . 1 990. ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ chan­ nels. Cell 61 : 769-76 Yu, C.-L., Tsai, M.-H., Stacey, D. W. 1 988. Cellular ras activity and phospholipid metabolism. Cell 52: 63-7 1 Yu, c.-L., Tsai, M.-H., Stacey, D. W. 1 990. Serum stimulation of NIH 3T3 cells induces the production of lipids able to inhibit GTPase-activating protein activity. Mol. Cell. Bioi. 1 0: 6683-89 Zhang, K., DeClue, J. E., Vass, W. c., Papa­ george, A. G., McCormick, F., Low)', D. R. 1 990. Suppression of c-ras trans­ formation by GTPase-activating protein. Nature 346: 754-56

Regulators and effectors of ras proteins.

Annu. Rev. Cell Bioi. 1991. 7:601-32 Copyright © 1991 by Annual Reviews Inc. All rights reserved ANNUAL REVIEWS Further Quick links to online conte...
876KB Sizes 0 Downloads 0 Views