Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier Jun Qin,1,2,3 Guo-Wei Lu,2,3,* Takahide Sakamoto,2 Kouichi Akahane,2 Naokatsu Yamamoto,2 Danshi Wang,1,2,3 Cheng Wang,1 Hongxiang Wang,1 Min Zhang,1 Tetsuya Kawanishi,2 and Yuefeng Ji1,4 1

State Key Laboratory of Information Photonics and Optical communication, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China 2 National Institute of Information and Communications Technology (NICT), 4-2-1, Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan 3 Institute of Innovative Science and Technology, Tokai University, Kanagawa, Japan 4 [email protected] * [email protected]

Abstract: In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR–LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10−9. Degenerate and nondegenerate FWM components are fully used in the experiment for data and logic multicasting. ©2014 Optical Society of America OCIS codes: (060.2330) Fiber optics communications; (060.4255) Networks, multicast; (130.3750) Optical logic devices; (190.4380) Nonlinear optics, four-wave mixing.

References and links 1. 2. 3. 4. 5. 6. 7. 8. 9.

A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014). G. N. Rouskas, “Optical layer multicast: rationale, building blocks, and challenges,” IEEE Netw. 17(1), 60–65 (2003). K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000). X. Zhang, Y. Wang, J. Sun, D. Liu, and D. Huang, “All-optical AND gate at 10 Gbit/s based on cascaded singleport-couple SOAs,” Opt. Express 12(3), 361–366 (2004). D. Hisano, A. Maruta, and K. Kitayama, “Demonstration of all-optical network coding by using SOA-MZI based XOR gates,” Proc. OFC’ 13, paper JW2A.58, 2013. Y. An, F. D. Ros, and C. Peucheret, “All-optical network coding for DPSK signals,” Proc. OFC’ 13, paper JW2A.60, 2013. G.-W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008). C. Zhiyu, Y. Lianshan, P. Wei, L. Bin, Y. Anlin, G. Yinghui, and L. Ju Han, “One-to-nine multicasting of RZDPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated Brillouin scattering suppression,” IEEE Photon. Technol. Lett. 24(20), 1882–1885 (2012). M. P. Fok and C. Shu, “Multipump four-wave mixing in a photonic crystal fiber for 6 ×10 Gb/s wavelength multicasting of DPSK signals,” IEEE Photon. Technol. Lett. 19(15), 1166–1168 (2007).

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29413

10. M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011). 11. W. Dawei, C. Tee-Hiang, Y. Yong-Kee, X. Zhaowen, W. Yixin, X. Gaoxi, and L. Jianguo, “Performance comparison of using SOA and HNLF as FWM medium in a wavelength multicasting scheme with reduced polarization sensitivity,” J. Lightwave Technol. 28(24), 3497–3505 (2010). 12. A. Poustie, K. Blow, A. Kelly, and R. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun. 168(1–4), 89–93 (1999). 13. J. Wang, J. Sun, Q. Sun, X. Zhang, and D. Huang, “All-optical 40 Gbit/s multicasting XOR logic gate for NRZDPSK signals,” Proc. OFC’ 08, paper SaK42, 2008. 14. J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express 17(15), 12555–12563 (2009). 15. K. Chan, C.-K. Chan, L. K. Chen, and F. Tong, “Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004). 16. N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, “An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron. 12(4), 702–707 (2006). 17. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Ultrafast all-optical three-input boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33(13), 1419– 1421 (2008). 18. G. Contestabile, A. Maruta, S. Sekiguchi, K. Morito, M. Sugawara, and K.-i. Kitayama, “All-optical wavelength multicasting in a QD-SOA,” IEEE J. Quantum Electron. 47(4), 541–547 (2011). 19. M. Matsuura, N. Calabretta, O. Raz, and H. J. Dorren, “Multichannel wavelength conversion of 50-Gbit/s NRZDQPSK signals using a quantum-dot semiconductor optical amplifier,” Opt. Express 19(26), B560–B566 (2011). 20. E. Dimitriadou and K. E. Zoiros, “All-optical XOR gate using Single Quantum-Dot SOA and optical filter,” J. Lightwave Technol. 31(23), 3813–3821 (2013). 21. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002). 22. N. Shibata, R. Braun, and R. Waarts, “Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(7), 1205–1210 (1987). 23. G.-W. Lu, E. Tipsuwannakul, T. Miyazaki, C. Lundstrom, M. Karlsson, and P. A. Andrekson, “Format conversion of optical multilevel signals using FWM-based optical phase erasure,” J. Lightwave Technol. 29(16), 2460–2466 (2011). 24. G. Contestabile, L. Banchi, M. Presi, and E. Ciaramella, “Investigation of transparency of FWM in SOA to advanced modulation formats involving intensity, phase, and polarization multiplexing,” J. Lightwave Technol. 27(19), 4256–4261 (2009). 25. J. P. Lacey, M. A. Summerfield, and S. Madden, “Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers,” J. Lightwave Technol. 16(12), 2419–2427 (1998). 26. K. Akahane, N. Yamamoto, and T. Kawanishi, “Fabrication of ultra-high-density InAs quantum dots using the strain-compensation technique,” Phys. Status Solidi A. 208(2), 425–428 (2011). 27. K. Akahane, N. Yamamoto, T. Umezawa, A. Kanno, and T. Kawanishi, “A semiconductor optical amplifier comprising highly stacked InAs quantum dots fabricated using the strain-compensation technique, ” Jpn. J. Appl. Phys. 53(04EG02) (2014).

1. Introduction All-optical signal processing techniques are highly desirable in future large-capacity optical networks for the high processing speed and no need for optical-electrical-optical (O-E-O) conversions [1]. Optical wavelength multicasting and optical logic gates are essential functions of optical signal processing. In the optical networks today, migration operation in data centers, transferring the user data from one data center to others where different wavelengths are employed, is a challenging issue. With optical wavelength multicasting technologies, a huge amount of user data of emerging applications like streaming media, high-definition TV can be efficiently delivered from the sever side to the user sides. The wavelength multicasting scheme makes the migration operation more flexible and efficient [2], and it is becoming an essential technology for data migration between data centers in the future optical networks. On the other hand, all-optical logic gates are useful network elements in addressing, switching, header recognition, data encoding, regeneration, parity checking [3, 4] and network coding [5, 6]. Ultrafast logic gate operations in the optical domain can potentially enable digital-signal-processing functions at a high-speed transmission line rate such that network latency can be decreased with improved performance. In the last decades, with the ever-growing Internet traffic, high spectrum-efficient phase-modulated signals

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29414

attracted increased interest for use in long-haul, high-capacity WDM systems. It is highly desirable to investigate wavelength multicasting and optical logic gate operation schemes for advanced phase modulated modulation formats. Previously, various wavelength multicasting schemes have been studied and demonstrated for differential phase-shift keying (DPSK) signal in various nonlinear devices including highly nonlinear fiber (HNLF) [7–9], Silicon waveguide [10] and semiconductor optical amplifier (SOA) [11]. Optical logic gates, including half-adder, full-adder, and exclusive-OR (XOR), could be constructed using all-optical processing approaches [12]. In the past few years, logic XOR gate for DPSK signal has also been demonstrated using highly nonlinear fiber (HNLF) [13, 14], SOA [15, 16] or periodically poled lithium niobate (PPLN) waveguide [17]. However, up to now, all the reported works of wavelength multicasting aimed at delivering the information carried by one input wavelength to several different output wavelengths, i.e., single-channel wavelength multicasting, SWM. It will be interesting to simultaneously multicast multiple input signals, namely delivering the information carried by two or more input wavelengths carrying different data to different destination wavelengths, i.e., multichannel wavelength multicasting, MWM. By employing one MWM module, individual SWM modules could be replaced, resulting in compact system design and lower power consumption. With MWM scheme the capacity and flexibility of the optical network could be further improved. In addition, most of the reported works of multicasting have the expenditure of additional pumps, which increases the implementation complexity and cost. On the other hand, the XOR logic operation of DPSK signal was achieved in [15] and [16] with only one-channel XOR output. Multi-channel output XOR for two-input DPSK signals in [13, 14] was obtained, but it required additional pump light. XOR multicasting operation for more than two input DPSK signals without pump light’s participation would be attractive. Moreover, so far, wavelength multicasting and optical logic gates in the previous reported works were performed separately. A laudable goal is to realize these important network functionalities simultaneously using single nonlinear element. For example, in the future optical network nodes, it will be attractive and efficient to simultaneously implement multiple wavelength multicasting to avoid channel contention or delivering data streams to numerous customers that employing different wavelengths, and logical gate operation to perform switch and control. Recently, quantum-dot SOA (QD-SOA) has attracted considerable interest for its unique properties like higher gain, faster response, lower noise figure (NF) and broader gain bandwidth compared with the traditional bulk/quantum-well SOAs. Multicasting and logic operation have been separately demonstrated using cross-gain modulation (XGM) or fourwave mixing (FWM) effects [18–20] in QD-SOA. In this paper, to the best of our knowledge, for the first time, we propose and experimentally demonstrate simultaneous MWM and XOR logic gate multicasting (XOR-LGM) for three input NRZ-DPSK channels based on FWM in QD-SOA. No additional pump light is needed in the scheme. Through the interaction of the input three lights, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time a three-output XOR-LGM is obtained at three different wavelengths. Error-free operations were achieved for all of the obtained signals with a power penalty less than 1.2dB at a bit-error rate (BER) of 10−9.

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29415

2. Operation principle

DPSK1 DPSK2

DPSK3

QD-SOA

Input

XOR1

DPSK1DPSK2

DPSK3

XOR2

Output

XOR3

Fig. 1. Operation principle of the simultaneous MWM and XOR-LGM scheme for three input NRZ-DPSK signals based on four-wave mixing without additional pump in QD-SOA.

The proposed simultaneous MWM and XOR-LGM scheme for three input NRZ-DPSK channels is schematically illustrated in Fig. 1. The scheme is based on three lights’ FWM, with no additional pump light’s participation. As shown in the Fig. 1, there are three input DPSK signals as FWM participators in SOA: DPSK1 at wavelength λ1 , DPSK2 at wavelength λ2 and DPSK3 at wavelength λ3 . The frequency spacing of DPSK1-to-DPSK2 and DPSK2-to-DPSK3 is Δf1 and Δf 2 , respectively. Both degenerate FWM (D-FWM) and non-degenerate FWM (ND-FWM) processes happen inside the QD-SOA with new frequencies generated [21], as schematically illustrated in Fig. 1. Each of the generated components through D-FWM and ND-FWM possesses a frequency of f abc = f a + f b − f c (b≠c, a b and c ∈ 1, 2, and 3), and a phase of φ abc = φ a + φ b − φ c (b≠c, a b and c ∈ 1, 2, and 3) [16, 22]. The components with a = b correspond to D-FWM components while the ones with a≠b are ND-FWM components. Finally nine idlers are generated, which are indicated by λ1− a ~ λ1− b , λ2 − a ~ λ2 − b , λ3− a ~ λ3− b and λXOR1 ~ λ XOR 3 in Fig. 1. The relationship of the electrical field ( E ) and the optical phase ( φ ) for the generated idlers at λ1− a ~ λ1−b , λ2 − a ~ λ2 −b , λ3− a ~ λ3−b (D-FWMs) and λXOR1 ~ λ XOR 3 (ND-FWMs) can be expressed as [23]: E1− a ∝ A2 2 A1* , φ1− a = 2φ 2 − φ1 ; E1−b ∝ A32 A1* , φ1− b = 2φ3 − φ1

(1)

E2 − a ∝ A12 A2* , φ 2 − a = 2φ1 − φ 2 ; E2 −b ∝ A32 A2* , φ 2 −b = 2φ3 − φ 2

(2)

E3− a ∝ A12 A3* , φ3− a = 2φ1 − φ3 ; E3−b ∝ A2 2 A3* , φ3−b = 2φ 2 − φ3

(3)

E XOR1 ∝ A1 A2 A3* , φ XOR1 = φ1 + φ 2 − φ3

(4)

E XOR 2 ∝ A1 A3 A2* , φ XOR 2 = φ1 + φ3 − φ 2

(5)

E XOR 3 ∝ A2 A3 A1* , φ XOR 3 = φ 2 + φ3 − φ1

(6)

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29416

where Ai , i ∈ [1, 2,3] is the field amplitude of the input lights, * represents the conjugate operation. Taking the generated components at λ1− a as an example, according to the Eq. (1), the phase modulation depth of the input DPSK2 at λ2 is doubled in the resulted FWM component at λ1− a . It means that the input phase pattern in DPSK2, (0, π), becomes (0, 2π). It implies that the phase modulation of input DPSK2 is erased in the component at λ1− a . Meanwhile, the phase information carried by λ1 (DPSK1) is preserved when it is converted to λ1− a . Similarly, λ1−b carries the phase information of λ1 (DPSK1). λ2 − a ~ λ2 −b and λ3− a ~ λ3−b keep the information of λ2 (DPSK2) and λ3 (DPSK3), respectively. Thus, 1-to-3 multicasting, including the original input wavelength, for each input DPSK signal is implemented, finally achieving a 3-to-9 MWM. At the same time, taking into account the phase periodicity of 2π, based on Eqs. (4)-(6), the phase information carried in the converted components at λXOR1 ~ λ XOR 3 shows XOR logic operation results among the three input signals. Hence, simultaneous MWM and XOR-LGM scheme for three input NRZ-DPSK channels is realized. Table 1 illustrates the different phase combination of the input DPSK1~DPSK3 and all the output phase patterns of the new generated FWM components at λ1− a ~ λ1−b , λ2 − a ~ λ2 −b , λ3− a ~ λ3−b and λXOR1 ~ λ XOR 3 . Table 1. Phase Patterns of the Simultaneous MWM and XOR-LGM Scheme for Three Input NRZ-DPSK Channels DPSK 1

DPSK 2

λ1− a

λ1−b

λ2 − a

0

0

0

0

0

0

0

0

0

0

π

0

0

0

0

π

π

π

π

π

0

0

π

π

0

0

π

π

π

0

π

π

π

π

0

0

0

DPS K3

λ2 −b

0

0

0

λ3−b

λXOR1 λ XOR 2

λ XOR

Output Phase Pattern

Input Phase Pattern 0

λ3− a

0

π

0

0

π

π

0

π

0

0

π

π

0

0

0

0

π

π

π

π

π

0

0

π

π

0

0

0

π

0

π

π

π

0

π

π

π

π

0

0

0

0

0

π

π

π

π

π

π

π

π

π

π

π

π

3. Experiment setup and results PM-TL1

PPG

PC1

AWG

Circulator 1 ODL1

PM-OC

PC2

PM-TL2

OC

1

2

Circulator 2

QD-SOA

2 3

3

NRZ-DPSK EDFA modulator

1

PC3 ODL2

PM-TL3 ATT DLI BERT T

EDFA

OBPF

EDFA

OBPF

BPD

Fig. 2. Experiment setup. PM-TL: polarization maintaining tunable laser; PM-OC: polarization maintaining optical coupler; EDFA: erbium-doped ðber ampliðer; AWG: arrayed waveguide grating. ODL: optical delay line. PC: polarization controller. OBPF: optical band-pass filter. ATT: attenuator. DLI: delay-line interferometer; BPD: balanced photo detector;

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29417

The experimental setup of our proposed simultaneous MWM and XOR-LGM scheme for three input NRZ-DPSK channels is presented in Fig. 2. Three polarization maintaining tunable lasers (PM-TL1~3), a polarization maintaining coupler (PM-OC) and one inphase/quadrature (IQ) modulator are used to generate the input three 10Gbps NRZ-DPSK signals. One arm of the IQ modulator is driven by an amplified electrical data stream from a pulse pattern generator (PPG, Anritsu MP1761B) having a pseudorandom bit sequence (PRBS) with the bit pattern length of 215−1. The other arm of the IQ modulator is left unmodulated. The wavelengths of the three signal lights are set as: λ1 at 1548.689nm, λ2 at 1549.494nm and λ3 at 1551.902nm. After generation, an erbium-doped ðber ampliðer (EDFA) is used to amplify the signals. After the EDFA, the three input signals are separated using an arrayed waveguide grating (AWG), and then delayed by integral bit periods with each other using two optical delay lines (ODL1 and ODL2). The three lights are set to be copolarized with each other by properly adjusting the polarization controllers (PCs) to reduce the system polarization sensitivity [11, 24-25] and obtain the highest FWM conversion efficiency in QD-SOA. All the three input signals are recombined together through an OC and then are injected into the QD-SOA. The power of the three input DPSK signals is kept even, and the total power injected to the QD-SOA is 5dBm. The two circulators before and after the QD-SOA are used as isolators to decrease the influence of the reflection. In the experiment, the bias current and temperature are set as 500 mA and 25°C, respectively. At the output of the QD-SOA, the new generated FWM idlers are filtered by an optical band-pass filter (OBPF) with variable central wavelength. The filtered idlers are then amplified by two cascaded EDFAs. A delay line interferometer (DLI) and a balanced photo-diode (BPD) are used to demodulate the signal and convert the signal into electrical signal. The bit-error-rate (BER) of the signal is measured using an error detector (ED, Anritsu MP1762A). The QD-SOA that we fabricated contains highly stacked Stranski-Krastanow QDs [26] and has a 2-mm-long device length. The gain of the device is dominated by transverse electric (TE) mode. Maximum 25 dB gain is measured around C-band at a bias current of 400 mA [27]. The complete (100%) carrier recovery time of the QD-SOA is about 30ps. FWM efficiencies of higher than −40 dB were achieved within a 23-nm range. Details of the device that we used are given in [27]. Figure 3 shows the optical spectra measured by an optical spectral analyzer (OSA, ANDO AQ6317B) at the input and output of the QD-SOA. In the measured optical spectra, the three input DPSK signals are indicated by λ1 , λ2 and λ3 , respectively. The new generated components are marked by λ1− a , λ1−b , λ2 − a , λ2 −b , λ3− a , λ3−b and λXOR1 ~ λ XOR 3 . As analyzed above, λ1− a ~ λ1−b , λ2 − a ~ λ2 −b and λ3− a ~ λ3−b preserve the information of the original input DPSK1, DPSK2 and DPSK3, respectively. And the components at λXOR1 ~ λ XOR 3 are the logic XOR gate of the input three signals. The spectrum indicates that all the components of MWM and XOR-LGM are successfully obtained after FWM. Among the newly generated components, λ1− a ~ λ1−b , λ2 − a ~ λ2 −b and λ3− a ~ λ3−b have conjugated phase with respect to the input DPSK1, DPSK2, and DPSK3, respectively. Optical phase conjugation is one of practical approaches to compensate for both chromatic dispersion and nonlinearity in longhaul transmission. With our current experimental setup, by tuning the frequency spacing between the input three signals, the output MWM and XOR-LGM channels could be consistent with the ITU channels. In the experiment, it is better to select the wavelengths of the input signals around the gain peak at 1533nm to get a high gain for all the signals. However, due to the wide gain bandwidth of the QD-SOA, the choice of the wavelengths could be flexible. To avoid frequency overlapping of the new generated components, the minimum frequency space of λ2 -to- λ3 ( Δf 2 ) should be larger than 2Δf1 ( Δf 2 > 2Δf1 ).

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29418

Fig. 3. Optical spectrum at the (a) input and (b) output of the QD-SOA.

To characterize the performance of the proposed simultaneous MWM and XOR-LGM scheme for three input NRZ-DPSK channels, BER curves versus the received power for each output channel is measured and shown in Fig. 4. The back-to-back (BTB) performance of the three input DPSK signals are also presented as references. The results in Fig. 4 indicate that error-free operations are obtained for the converted channels. Compared to the BTB case, the maximum power penalty of the output wavelength multicasting channels is 1.2dB. And for the three-output logic XOR gate, the maximum power penalty is 0.6dB.

Fig. 4. Measured BER performance versus received power for the output MWM and XORLGM channels.

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29419

Table 2. Performance of the Simultaneous MWM and XOR-LGM Scheme Channel

Wavelength

CE

Power penalty

1550.298nm

Estimated OSNR 25.1dB

λ1− a λ1−b λ2 − a λ2 −b λ3− a λ3−b λXOR1 λ XOR 2 λ XOR 3

−29.1dB

0.7dB

1555.119nm

21.2dB

−38.2dB

0.85dB

1547.890nm

26.6dB

−27.0dB

0.4dB

1554.316nm

23.3dB

−36.3dB

0.83dB

1545.495nm

18.2dB

−35.5dB

1.2dB

1547.092nm

21.1dB

−32.5dB

0.9dB

1546.291nm

26.32dB

−28 dB

0.6dB

1551.099nm

26.45dB

−27.3dB

0.43dB

1552.705nm

26.42dB

−27.5dB

0.5dB

Here, the conversion efficiency (CE) is defined as the ratio of the converted signal power to that of the input signal. The detailed performances including the wavelengths, the CE and the power penalty at BER of 10−9 of the output MWM and XOR-LGM channels are summarized in Table 2. The corresponding eye diagrams of the input three DPSK signals and the output MWM and XOR-LGM channels after demodulation are shown in Fig. 5. The clear and open eyes prove the good quality of the output signals. 20ps/div

(a) (a)

(e)

(i)

(b)

(f)

(j)

(c)

(g)

(k)

(d)

(h)

(l)

Fig. 5. Measured eye diagrams at the output of the QD-SOA for (a) λ1 , 1548.689nm. (b)

λ1− a ,1550.298nm. (c) λ1−b ,1555.119nm. (d) λXOR1 ,1546.291nm. (e) λ2 ,1549.494nm. (f) λ2 − a ,1547.890nm. (g) λ2 −b ,1554.316nm. (h) λ XOR 2 ,1551.099nm. (i) λ3 ,1551.902nm. (j) λ3− a ,1545.495nm. (k) λ3−b ,1547.092nm. (l) λ XOR 3 ,1552.705nm. All with 20ps/div. To further verify the logic XOR gate multicasting operation, the temporal waveforms (bit patterns) are captured for different optical waves. Figure 6 and Fig. 7 show the temporal waveforms of demodulation outputs from the DLI for the input three NRZ-DPSK signals and the output three channels at λXOR1 ~ λ XOR 3 . It can be clearly seen that all the three demodulated idler waves satisfy the XOR logic operation for the three input DPSK signals. The slight

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29420

degradation of the XOR outputs may be attributed to the phase and intensity noise in FWM process. 01000 101 1 00111 0101 0011111 01 0000 111 0001 001 0011 01101

Demodulated DPSK1 (a)

500ps/div

0101 0011 111 01 0000111 0001 001 0011 011 01011 01111 011 000

Demodulated DPSK2 (b)

500ps/div

00111 110 10000 111 0001 001 0011 01101 011 01111 011 000 1101

Demodulated DPSK3 (c)

500ps/div

Fig. 6. 50-bit demodulated waveforms of the three input signal: (a) DPSK1, (b) DPSK2, (c) DPSK3.

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29421

Fig. 7. 50-bit demodulated waveforms of three XOR-LGM channels at (a) λ XOR1 , (b) λ XOR 2 , (c) λ XOR 3 .

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29422

Note that, with the current QD-SOA sample, to avoid breaking the device, the bias current and the launched total power are limited to 500mA and 5dBm, respectively. In the future, when fabricating QD-SOA device, we will optimize the linewidth of the waveguide and thickness of the waveguide layer to enable the QD-SOA to handle higher optical launch power and bias current, thus improving the conversion efficiency and performance of the wavelength multicast based on the FWM in QD-SOA. An extension of this scheme in future can be used for simultaneous MWM and XOR-LGM for more than three DPSK channels without the use of additional pumps. However, when the input channel is more than three, the frequency detuning of the input lights needs to be adjusted properly to avoid frequency overlap for the new generated idlers, frequency overlap will cause severe crosstalk [7]. On the other hand, higher order phase modulated signals like quadrature phase-shift keying (QPSK) can also be considered in this simultaneous MWM and XOR-LGM scheme, but additional pumps may be needed. Owing to the ultra-fast characteristic of QD-SOA, it also can support signal processing for higher bit rate signals. 4. Conclusion

Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three input NRZ-DPSK channels based on FWM without any additional pump lights’ participation in QD-SOA has been discussed and experimentally demonstrated. Through the interaction of the input three signals, each channel is successfully multicasted to three wavelengths (1-to-3 multicasting for each), totally 3-to-9 MWM, and at the same time a three-output XOR-LGM is obtained at three different wavelengths. The generated nine wavelength multicasting channels in 3-to-9 MWM are with a maximum power penalty 1.2dB at a BER of 10−9, and for the three XOR logic gate outputs, the penalty is less than 0.6dB at a BER of 10−9. The three-input three-output XOR has potential to be used in the optical network coding, which helps to protect the optical networks against network failures and thus avoid the loss of huge amount of user data [6]. The wavelengths of the generated MWM and XOR-LGM channels could be consistent with the ITU standard by tuning the frequency spacing between the input three signals. The QD-SOA is useful component for achieving multiple data and logic multicasting in the future transparent optical networks. Acknowledgment

The work was conducted under the collaboration contract between NICT and Tokai University. J. Qin and D. Wang would like to thank the support of the NICT trainee program, and the financial support by the National High Technology Research and Development Program of China (863 Program) (No.2012AA011302) and the 863 Program of China (No.2011AA010306). G.-W. Lu would like to acknowledge the financial support from the Grant-in-Aid for Young Scientist (A) (25709031) granted by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

#224472 - $15.00 USD Received 7 Oct 2014; revised 6 Nov 2014; accepted 6 Nov 2014; published 17 Nov 2014 (C) 2014 OSA 1 December 2014 | Vol. 22, No. 24 | DOI:10.1364/OE.22.029413 | OPTICS EXPRESS 29423

Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.

In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM...
3MB Sizes 0 Downloads 4 Views