Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2015, Article ID 494707, 6 pages http://dx.doi.org/10.1155/2015/494707

Research Article Stabilities for Nonisentropic Euler-Poisson Equations Ka Luen Cheung and Sen Wong Department of Mathematics and Information Technology, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, New Territories, Hong Kong Correspondence should be addressed to Sen Wong; [email protected] Received 6 December 2014; Revised 8 March 2015; Accepted 9 March 2015 Academic Editor: Carlo Bianca Copyright Β© 2015 K. L. Cheung and S. Wong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We establish the stabilities and blowup results for the nonisentropic Euler-Poisson equations by the energy method. By analysing the second inertia, we show that the classical solutions of the system with attractive forces blow up in finite time in some special dimensions when the energy is negative. Moreover, we obtain the stabilities results for the system in the cases of attractive and repulsive forces.

1. Introduction The compressible nonisentropic Euler (𝛿 = 0) or EulerPoisson (𝛿 = Β±1) system for fluids can be written as πœŒπ‘‘ + βˆ‡ β‹… (πœŒπ‘’) = 0, (πœŒπ‘’)𝑑 + βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒) + βˆ‡π‘ƒ + π›½πœŒπ‘’ = βˆ’π›ΏπœŒβˆ‡Ξ¦, 𝑆𝑑 + 𝑒 β‹… βˆ‡π‘† = 0,

Ξ¦ (𝑑, π‘₯) = 𝛼 (𝑁) ∫ (1)

ΔΦ (𝑑, π‘₯) = 𝛼 (𝑁) 𝜌, 𝑃 = πΎπœŒπ›Ύ 𝑒𝑆 , where 𝛽 β‰₯ 0 is the frictional damping constant and 𝛼(𝑁) is a constant related to the unit ball in R𝑁. 𝛼(1) = 2, 𝛼(2) = 2πœ‹ and 𝛼 (𝑁) = 𝑁 (𝑁 βˆ’ 2) 𝑉 (𝑁) ,

When 𝛿 = 0, the system comprises the compressible Euler equations and can be applied as a classical model in fluid mechanics [3]. For more classical and recent results in these systems, readers can refer to [1, 4–10]. It is well known that the solution for the Poisson equation (1)4 can be written as

(2)

where 𝑉(𝑁) is the volume of the unit ball in R𝑁. As usual, 𝜌 = 𝜌(𝑑, π‘₯) β‰₯ 0, 𝑒 = 𝑒(𝑑, π‘₯) ∈ R𝑁, and 𝑆(𝑑, π‘₯) are the density, the velocity, and the entropy, respectively. 𝑃 is the pressure function, for which the constants 𝐾 β‰₯ 0 and 𝛾 β‰₯ 1. When 𝛿 = 1, the system is self-attractive. The system (1) is the Newtonian description of gaseous stars [1]. When 𝛿 = βˆ’1, the system comprises the Euler-Poisson equations with repulsive forces and can be used as a semiconductor model [2, 3].

R𝑁

𝐺 (π‘₯ βˆ’ 𝑦) 𝜌 (𝑑, 𝑦) 𝑑𝑦,

(3)

where 𝐺 is the Green’s function for the Poisson equation in the 𝑁-dimensional spaces defined by |π‘₯| , { { { { { 𝐺 (π‘₯) := {log |π‘₯| , { { βˆ’1 { { , { |π‘₯|π‘βˆ’2

𝑁 = 1; 𝑁 = 2;

(4)

𝑁 β‰₯ 3.

Notation. In the following discussion, classical solutions (𝜌, 𝑒, 𝑆) are 𝐢1 solutions with compact support Ξ© = Ξ©(𝑑) for each fixed time 𝑑. We also denote the total mass by 𝑀, where 𝑀 = ∫ 𝜌 𝑑π‘₯ = ∫ Ξ©

Ξ©(0)

𝜌0 𝑑π‘₯,

(5)

where 𝜌0 = 𝜌0 (π‘₯) := 𝜌(0, π‘₯). Lastly, we will denote 𝑅 (𝑑) = the diameter of Ξ© (𝑑) .

(6)

2

The Scientific World Journal

2. Lemmas In this section, we establish some lemmas for the proof of the main results. The following lemma will be used to derive the energy functional for 𝛾 > 1; namely, 1 1 𝛿 𝑃) 𝑑π‘₯ + ∫ 𝜌Φ 𝑑π‘₯ 𝐸 (𝑑) = ∫ ( 𝜌 |𝑒|2 + π›Ύβˆ’1 2 Ξ© Ξ© 2

(7)

Lemma 2. For the classical solution (𝜌, 𝑒, 𝑆) of system (1), we have 1 ∫ ( 𝜌 |𝑒|2 ) 𝑑π‘₯ = βˆ’ ∫ 𝑒 β‹… βˆ‡π‘ƒ βˆ’ 𝛿 ∫ (βˆ‡Ξ¦) β‹… (πœŒπ‘’) 𝑑π‘₯ 𝑑 Ξ© 2 Ξ© Ξ© (13) 2 βˆ’ 𝛽 ∫ 𝜌 |𝑒| 𝑑π‘₯, Ξ©

where 𝑃 is defined by (1)5 and Ξ¦ is the solution of (1)4 .

is conserved in time if the system (1) is not damped.

Proof. We have

Lemma 1. For the classical solution (𝜌, 𝑒, 𝑆) of system (1), we have ∫ 𝑃𝑑 𝑑π‘₯ = (𝛾 βˆ’ 1) ∫ 𝑒 β‹… βˆ‡π‘ƒ 𝑑π‘₯, Ξ©

1 ( 𝜌 |𝑒|2 ) 2 𝑑 1 = (πœŒπ‘’)𝑑 β‹… 𝑒 βˆ’ πœŒπ‘‘ |𝑒|2 2

(8)

Ξ©

(14)

where 𝑃 is defined by (1)5 .

(by product rule)

(15)

= βˆ’ (π›ΏπœŒβˆ‡Ξ¦ + βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒) + βˆ‡π‘ƒ + π›½πœŒπ‘’) β‹… 𝑒 (16) 1 (βˆ‡ β‹… (πœŒπ‘’)) |𝑒|2 by (1)1 and (1)2 . 2 One can check a detail proof of the following equality in the Appendix:

Proof. We have

+

𝑃𝑑 = 𝐾 (πœŒπ›Ύ 𝑒𝑆 𝑆𝑑 + 𝑒𝑆 π›ΎπœŒπ›Ύβˆ’1 πœŒπ‘‘ )

by (1)5

= 𝑃𝑆𝑑 + 𝐾𝑒𝑆 π›ΎπœŒπ›Ύβˆ’1 [βˆ’βˆ‡ β‹… (πœŒπ‘’)]

by (1)5 and (1)1

= 𝑃 (βˆ’π‘’ β‹… βˆ‡π‘†) + 𝐾𝑒𝑆 π›ΎπœŒπ›Ύβˆ’1 [βˆ’βˆ‡ β‹… (πœŒπ‘’)] 𝑁

𝑆 π›Ύβˆ’1

= βˆ’π‘ƒ (βˆ‘π‘’π‘– πœ•π‘– 𝑆) βˆ’ 𝐾𝛾𝑒 𝜌 𝑖=1

𝑁

𝑁

𝑖=1

𝑖=1

𝑁

𝑁

𝑖=1

𝑖=1

1 ∫ ( |𝑒|2 βˆ‡ β‹… (πœŒπ‘’) βˆ’ 𝑒 β‹… [βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒)]) 𝑑π‘₯ = 0. Ξ© 2

by (1)3

Thus,

𝑁

[βˆ‘ (πœŒπœ•π‘– 𝑒𝑖 + 𝑒𝑖 πœ•π‘– 𝜌)]

1 ∫ ( 𝜌 |𝑒|2 ) 𝑑π‘₯ = βˆ’ ∫ (π›ΏπœŒβˆ‡Ξ¦ + βˆ‡π‘ƒ + π›½πœŒπ‘’) β‹… 𝑒 𝑑π‘₯ (18) 𝑑 Ξ© 2 Ξ©

𝑖=1

= βˆ’π›Ύπ‘ƒβˆ‘πœ•π‘– 𝑒𝑖 βˆ’ βˆ‘ [π‘ƒπœ•π‘– 𝑆 + 𝐾𝛾𝑒𝑆 πœŒπ›Ύβˆ’1 πœ•π‘– 𝜌] 𝑒𝑖

by (1)5

by (16) and (17). Thus, the proof is complete. Lemma 3. For the classical solution (𝜌, 𝑒, 𝑆) of system (1), we have 1 ∫ (βˆ‡Ξ¦) β‹… (πœŒπ‘’) 𝑑π‘₯ = ∫ Ξ¦πœŒπ‘‘ 𝑑π‘₯ = ∫ [𝜌Φ]𝑑 𝑑π‘₯, (19) 2 Ξ© Ξ© Ξ©

= βˆ’π›Ύπ‘ƒβˆ‘πœ•π‘– 𝑒𝑖 βˆ’ βˆ‘ (πœ•π‘– 𝑃) 𝑒𝑖 = βˆ’π›Ύπ‘ƒβˆ‡ β‹… 𝑒 βˆ’ 𝑒 β‹… βˆ‡π‘ƒ. (9) Note that, by Divergence Theorem, βˆ’ ∫ π‘ƒβˆ‡ β‹… 𝑒 𝑑π‘₯ = ∫ 𝑒 β‹… βˆ‡π‘ƒ 𝑑π‘₯. Ξ©

Ξ©

where Ξ¦ is the solution of (1)4 . Proof. We have

(10)

∫ (βˆ‡Ξ¦) β‹… (πœŒπ‘’) 𝑑π‘₯ Ξ©

= βˆ’ ∫ Ξ¦βˆ‡ β‹… (πœŒπ‘’) 𝑑π‘₯

Thus,

Ξ©

∫ 𝑃𝑑 𝑑π‘₯ = (𝛾 βˆ’ 1) ∫ 𝑒 β‹… βˆ‡π‘ƒ 𝑑π‘₯. Ξ©

(17)

Ξ©

(11)

Next, the results of the following two lemmas will be used in the derivations of the energy functionals for both 𝛾 > 1 and 𝛾 = 1. It will be shown that in Section 3 the energy functional for 𝛾 = 1 is 1 𝛿 𝐸 (𝑑) = ∫ ( 𝜌 |𝑒|2 + πΎπœŒπ‘’π‘† (ln 𝜌 βˆ’ 1)) 𝑑π‘₯ + ∫ 𝜌Φ 𝑑π‘₯ 2 Ξ© Ξ© 2 (12) which is conversed in time if the system (1) is not damped.

= ∫ Ξ¦πœŒπ‘‘ 𝑑π‘₯ Ξ©

by Divergence Theorem (20)

by (1)1 .

Thus, the first equality in (19) holds. Next, 1 ∫ ΦΔΦ𝑑 𝑑π‘₯ by (1)4 ∫ Ξ¦πœŒπ‘‘ 𝑑π‘₯ = 𝛼 (𝑁) Ξ© Ξ© =

1 ∫ ΔΦΦ𝑑 𝑑π‘₯ 𝛼 (𝑁) Ξ©

= ∫ πœŒΞ¦π‘‘ 𝑑π‘₯ Ξ©

by Green’s Formula (21)

by (1)4 .

Thus, the second equality in (19) holds.

The Scientific World Journal

3

The lemma below is crucial to obtaining the energy functional for 𝛾 = 1. Comparing the left hand sides of (8) and (22), we note that the left hand side of (22) (given in the next lemma), which contains the term ln 𝜌 βˆ’ 1, is nontrivial to be found. Lemma 4. For the classical solution (𝜌, 𝑒, 𝑆) of system (1) with 𝛾 = 1, we have d ∫ πΎπœŒπ‘’π‘† (ln 𝜌 βˆ’ 1) 𝑑π‘₯ = ∫ 𝑒 β‹… βˆ‡π‘ƒ 𝑑π‘₯, d𝑑 Ξ© Ξ©

Proposition 5. For the classical solution (𝜌, 𝑒, 𝑆) of system (1) with 𝛾 > 1, let 1 1 𝛿 𝑃) 𝑑π‘₯ + ∫ 𝜌Φ 𝑑π‘₯. 𝐸 (𝑑) = ∫ ( 𝜌 |𝑒|2 + 2 𝛾 βˆ’ 1 2 Ξ© Ξ©

(25)

Then, 𝐸̇ (𝑑) = βˆ’π›½ ∫ 𝜌 |𝑒|2 𝑑π‘₯, Ξ©

(26)

where 𝑃 is defined by (1)5 .

Μ‡ is the devertive of 𝐸(𝑑) with respect to 𝑑. where 𝐸(𝑑) Thus, 𝐸(𝑑) is a decreasing function and is conserved if the system is not damped.

Proof. Note that

Proof. By Lemma 1,

(22)

𝑆

1 ∫ 𝑃 𝑑π‘₯ = ∫ 𝑒 β‹… βˆ‡π‘ƒ 𝑑π‘₯. π›Ύβˆ’1 Ξ© 𝑑 Ξ©

[πœŒπ‘’ (ln 𝜌 βˆ’ 1)]𝑑 𝑆

𝑆

= 𝑒 [𝜌 (ln 𝜌 βˆ’ 1)]𝑑 + [𝜌 (ln 𝜌 βˆ’ 1)] 𝑒 𝑆𝑑 𝑆

By Lemma 2,

𝑆

= 𝑒 [πœŒπ‘‘ + (ln 𝜌 βˆ’ 1) πœŒπ‘‘ ] + 𝑒 𝜌 (ln 𝜌 βˆ’ 1) 𝑆𝑑 = 𝑒𝑆 (ln 𝜌) πœŒπ‘‘ + 𝑒𝑆 𝜌 (ln 𝜌 βˆ’ 1) 𝑆𝑑

(23)

1 ∫ ( 𝜌 |𝑒|2 ) 𝑑π‘₯ = βˆ’ ∫ 𝑒 β‹… βˆ‡π‘ƒ βˆ’ 𝛿 ∫ (βˆ‡Ξ¦) β‹… (πœŒπ‘’) 𝑑π‘₯ 𝑑 Ξ© 2 Ξ© Ξ© βˆ’ 𝛽 ∫ 𝜌 |𝑒| 𝑑π‘₯. Ξ©

By Lemma 3,

by (1)1 and (1)3 .

∫ (βˆ‡Ξ¦) β‹… (πœŒπ‘’) 𝑑π‘₯ =

Thus,

Ξ©

d ∫ πΎπœŒπ‘’π‘† (ln 𝜌 βˆ’ 1) 𝑑π‘₯ d𝑑 Ξ©

(29)

Proposition 6. For the classical solution (𝜌, 𝑒, 𝑆) of system (1) with 𝛾 = 1, let

Ξ©

1 𝛿 𝐸 (𝑑) = ∫ ( 𝜌 |𝑒|2 + πΎπœŒπ‘’π‘† (ln 𝜌 βˆ’ 1)) 𝑑π‘₯ + ∫ 𝜌Φ 𝑑π‘₯. 2 Ξ© Ξ© 2 (30)

βˆ’ ∫ 𝐾𝑒𝑆 𝜌 (ln 𝜌 βˆ’ 1) (𝑒 β‹… βˆ‡π‘†) 𝑑π‘₯ Ξ©

= ∫ (πœŒπ‘’) β‹… βˆ‡ [𝐾𝑒𝑆 (ln 𝜌)] 𝑑π‘₯

Then,

Ξ©

𝐸̇ (𝑑) = βˆ’π›½ ∫ 𝜌 |𝑒|2 𝑑π‘₯,

(24)

Ξ©

by Divergence Theorem = ∫ 𝑒 β‹… [πΎπœŒβˆ‡ (𝑒𝑆 ln 𝜌) βˆ’ 𝐾𝑒𝑆 𝜌 (ln 𝜌 βˆ’ 1) βˆ‡π‘†] 𝑑π‘₯ Ξ©

= ∫ 𝑒 β‹… [𝐾𝑒𝑆 βˆ‡πœŒ + 𝐾𝑒𝑆 πœŒβˆ‡π‘†] 𝑑π‘₯ Ξ©

Ξ©

1 ∫ [𝜌Φ]𝑑 𝑑π‘₯. 2 Ξ©

Thus, the proof is complete.

= βˆ’ ∫ 𝐾𝑒𝑆 (ln 𝜌) [βˆ‡ β‹… (πœŒπ‘’)] 𝑑π‘₯

= ∫ 𝑒 β‹… βˆ‡π‘ƒ 𝑑π‘₯

(28)

2

= βˆ’π‘’π‘† (ln 𝜌) (βˆ‡ β‹… (πœŒπ‘’)) βˆ’ 𝑒𝑆 𝜌 (ln 𝜌 βˆ’ 1) (𝑒 β‹… βˆ‡π‘†)

βˆ’ ∫ 𝐾𝑒𝑆 𝜌 (ln 𝜌 βˆ’ 1) (𝑒 β‹… βˆ‡π‘†) 𝑑π‘₯

(27)

Ξ©

Μ‡ is the derivative of 𝐸(𝑑) with respect to 𝑑. where 𝐸(𝑑) Thus, 𝐸(𝑑) is a decreasing function and is conserved if the system is not damped. Proof. By Lemma 2, 1 ∫ ( 𝜌 |𝑒|2 ) 𝑑π‘₯ = βˆ’ ∫ 𝑒 β‹… βˆ‡π‘ƒ βˆ’ 𝛿 ∫ (βˆ‡Ξ¦) β‹… (πœŒπ‘’) 𝑑π‘₯ 𝑑 Ξ© 2 Ξ© Ξ©

by (1)5 .

The proof is complete.

3. Main Results In this section, we find out the energy functionals for the system (1) in the case of 𝛾 > 1 (Proposition 5) and 𝛾 = 1 (Proposition 6). Moreover, we establish the stabilities results (Proposition 8) and a blowup result (Proposition 9) for system (1).

(31)

(32)

2

βˆ’ 𝛽 ∫ 𝜌 |𝑒| 𝑑π‘₯. Ξ©

By Lemma 3, ∫ (βˆ‡Ξ¦) β‹… (πœŒπ‘’) 𝑑π‘₯ = Ξ©

1 ∫ [𝜌Φ]𝑑 𝑑π‘₯. 2 Ξ©

(33)

By Lemma 4, d ∫ πΎπœŒπ‘’π‘† (ln 𝜌 βˆ’ 1) 𝑑π‘₯ = ∫ 𝑒 β‹… βˆ‡π‘ƒ 𝑑π‘₯. d𝑑 Ξ© Ξ© Thus, the proof is complete.

(34)

4

The Scientific World Journal

Proposition 7. Let

Thirdly, 𝐻 (𝑑) = ∫ 𝜌 |π‘₯|2 𝑑π‘₯.

(35)

Ξ©

βˆ’ 𝛿 ∫ 𝜌π‘₯ β‹… βˆ‡Ξ¦ 𝑑π‘₯ Ξ©

= βˆ’π›Ώπ›Ό (𝑁) ∫ ∫ 𝜌 (π‘₯) 𝜌 (𝑦) [βˆ‡π‘₯ 𝐺 (π‘₯ βˆ’ 𝑦) β‹… π‘₯] 𝑑𝑦 𝑑π‘₯

We have

Ξ© Ξ©

by (3)

𝐻̈ (𝑑) = βˆ’π›½π»Μ‡ (𝑑) + 2 ∫ (𝜌 |𝑒|2 + 2𝑃) 𝑑π‘₯ βˆ’ 2πœ‹π›Ώπ‘€2 , Ξ©

=: βˆ’π›Ώπ›Ό (𝑁) 𝐼,

for 𝑁 = 2,

(40) (36)

𝐻̈ (𝑑) = βˆ’π›½π»Μ‡ (𝑑) + 2 ∫ (𝜌 |𝑒|2 + 𝑁𝑃) 𝑑π‘₯ Ξ©

+ (𝑁 βˆ’ 2) 𝛿 ∫ 𝜌Φ 𝑑π‘₯, Ξ©

for 𝑁 β‰₯ 3,

Μ‡ ̈ Μ‡ where 𝐻(𝑑) = (d/d𝑑)𝐻(𝑑), 𝐻(𝑑) = (d/d𝑑)𝐻(𝑑), (𝜌, 𝑒, 𝑆) is a classical solution of system (1), and 𝑀 is defined by (5).

where βˆ‡π‘₯ is the gradient operator with respect to the spatial variable π‘₯. Note that 𝐼 = ∫ ∫ 𝜌 (π‘₯) 𝜌 (𝑦) [βˆ‡π‘₯ 𝐺 (π‘₯ βˆ’ 𝑦) β‹… π‘₯] 𝑑𝑦 𝑑π‘₯ Ξ© Ξ©

= ∫ ∫ 𝜌 (π‘₯) 𝜌 (𝑦) [βˆ‡π‘₯ 𝐺 (π‘₯ βˆ’ 𝑦) β‹… (π‘₯ βˆ’ 𝑦)] 𝑑𝑦 𝑑π‘₯ Ξ© Ξ©

Proof.

(41)

+ ∫ ∫ 𝜌 (π‘₯) 𝜌 (𝑦) [βˆ‡π‘₯ 𝐺 (π‘₯ βˆ’ 𝑦) β‹… 𝑦] 𝑑𝑦 𝑑π‘₯.

𝐻̇ (𝑑) = βˆ’ ∫ βˆ‡ β‹… (πœŒπ‘’) |π‘₯| 𝑑π‘₯ 2

Ξ©

= ∫ βˆ‡ |π‘₯|2 β‹… (πœŒπ‘’) 𝑑π‘₯ Ξ©

Ξ© Ξ©

by (1)1

For 𝑁 = 2, βˆ‡π‘₯ 𝐺 (π‘₯) = βˆ‡π‘₯ log |π‘₯| =

by Divergence Theorem

= ∫ 2π‘₯ β‹… (πœŒπ‘’) 𝑑π‘₯,

1 π‘₯. |π‘₯|2

(42)

Thus,

Ξ©

𝐼 = ∫ ∫ 𝜌 (π‘₯) 𝜌 (𝑦) 𝑑𝑦 𝑑π‘₯ βˆ’ 𝐼,

𝐻̈ (𝑑) = 2 ∫ π‘₯ β‹… (βˆ’βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒) βˆ’ βˆ‡π‘ƒ βˆ’ π›ΏπœŒβˆ‡Ξ¦ βˆ’ π›½πœŒπ‘’) 𝑑π‘₯

Ξ© Ξ©

Ξ©

1 𝑀2 𝐼 = ∫ ∫ 𝜌 (π‘₯) 𝜌 (𝑦) 𝑑𝑦 𝑑π‘₯ = . 2 Ξ© Ξ© 2

by (1)2 = βˆ’π›½π»Μ‡ (𝑑) + 2 ∫ π‘₯ β‹… (βˆ’βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒) βˆ’ βˆ‡π‘ƒ βˆ’ π›ΏπœŒβˆ‡Ξ¦) 𝑑π‘₯. Ξ©

(37)

(43)

The result for 𝑁 = 2 is established. For 𝑁 β‰₯ 3, βˆ‡π‘₯ 𝐺 (π‘₯) = βˆ’βˆ‡π‘₯

We split the last term of the above equality into three parts. Firstly,

1 1 = (𝑁 βˆ’ 2) 𝑁 π‘₯. π‘βˆ’2 |π‘₯| |π‘₯|

(44)

Thus, βˆ’ ∫ π‘₯ β‹… [βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒)] 𝑑π‘₯

𝐼 = ∫ ∫ 𝜌 (π‘₯) 𝜌 (𝑦) [βˆ‡π‘₯ 𝐺 (π‘₯ βˆ’ 𝑦) β‹… (π‘₯ βˆ’ 𝑦)] 𝑑𝑦 𝑑π‘₯

Ξ©

𝑁

Ξ© Ξ©

𝑁

= βˆ’ βˆ‘ ∫ π‘₯𝑗 βˆ‘πœ•π‘– (πœŒπ‘’π‘– 𝑒𝑗 ) 𝑑π‘₯ 𝑗=1 Ξ©

by definitions

(38)

𝑖=1

= ∫ 𝜌 |𝑒|2 𝑑π‘₯ Ξ©

Ξ© Ξ©

=βˆ’

by integration by parts.

(𝑁 βˆ’ 2) ∫ 𝜌Φ 𝑑π‘₯ βˆ’ 𝐼, 𝛼 (𝑁) Ξ© 𝐼=βˆ’

Secondly, βˆ’ ∫ π‘₯ β‹… βˆ‡π‘ƒ 𝑑π‘₯ = ∫ π‘ƒβˆ‡ β‹… π‘₯ 𝑑π‘₯ Ξ©

+ ∫ ∫ 𝜌 (π‘₯) 𝜌 (𝑦) [βˆ‡π‘₯ 𝐺 (π‘₯ βˆ’ 𝑦) β‹… 𝑦] 𝑑𝑦 𝑑π‘₯

Ξ©

by Divergence Theorem

π‘βˆ’2 ∫ 𝜌Φ 𝑑π‘₯. 2𝛼 (𝑁) Ξ©

The results for 𝑁 β‰₯ 3 are also established. Now, we are ready to present the stability results.

= ∫ 𝑁𝑃 𝑑π‘₯. Ξ©

(45)

(39)

Proposition 8. Considering the classical solutions of system (1), we have the following.

The Scientific World Journal

5

Case 1. For 𝛿 = 1, 𝛽 = 0, 𝑁 = 3 or 4, 𝛾 β‰₯ 2(𝑁 βˆ’ 1)/𝑁, and 𝐸(0) β‰₯ 0, we have lim inf

π‘‘β†’βˆž

𝑅 (𝑑) √ (𝑁 βˆ’ 2) 𝐸 (0) β‰₯ . 𝑑 𝑀

Case 2. By Propositions 5 and 7, we have 𝐻̈ (𝑑) = 2 ∫ (𝜌 |𝑒|2 + 𝑁𝑃) 𝑑π‘₯ + (𝑁 βˆ’ 2) ∫ 𝜌 (βˆ’Ξ¦) 𝑑π‘₯ Ξ©

(46)

Ξ©

= 2 [2𝐸 (𝑑) βˆ’

Case 2. For 𝛿 = βˆ’1, 𝛽 = 0, 𝑁 β‰₯ 4, and 𝛾 β‰₯ (𝑁 + 2)/𝑁, we have lim inf

π‘›β†’βˆž

𝑅 (𝑑) √ 2𝐸 (0) β‰₯ . 𝑑 𝑀

+ 2𝑁 ∫ 𝑃 𝑑π‘₯ + (𝑁 βˆ’ 2) ∫ 𝜌 (βˆ’Ξ¦) 𝑑π‘₯ Ξ©

(47)

π‘›β†’βˆž

𝑅 (𝑑) √ β‰₯ πœ‹π‘€. 𝑑

Ξ©(𝑑)

(48)

𝜌 |π‘₯|2 𝑑π‘₯ ≀ 𝑅2 (𝑑) 𝑀.

Note that βˆ’Ξ¦ is a positive function for 𝑁 β‰₯ 3 by (3) and (4). Thus, 𝐻 (𝑑) β‰₯ 2𝐸 (0) 𝑑2 + 𝐻̇ (0) 𝑑 + 𝐻 (0) .

lim inf

π‘›β†’βˆž

𝑅 (𝑑) √ 2𝐸 (0) β‰₯ . 𝑑 𝑀

(56)

Case 3. By Proposition 7, we have 𝐻̈ (𝑑) = 2 ∫ (𝜌 |𝑒|2 + 2𝑃) 𝑑π‘₯ + 2πœ‹π‘€2

𝐻̈ (𝑑) = 2 ∫ (𝜌 |𝑒|2 + 𝑁𝑃) 𝑑π‘₯ + (𝑁 βˆ’ 2) ∫ 𝜌Φ 𝑑π‘₯

Ξ©

Ξ©

(57) 2

β‰₯ 2πœ‹π‘€ .

= 2 ∫ 𝜌 |𝑒|2 𝑑π‘₯ + 2𝑁 ∫ 𝑃 𝑑π‘₯ Ξ©

(55)

It follows that

(49)

Case 1. By Propositions 5 and 7, we have

Ξ©

Ξ©

= 4𝐸 (0) .

Proof. First of all, by definitions (35), (6), and (5), we always have 𝐻 (𝑑) = ∫

(54)

β‰₯ 4𝐸 (𝑑)

Case 3. For 𝛿 = βˆ’1, 𝛽 = 0, 𝑁 = 2, and 𝛾 > 1, we have lim inf

2 ∫ 𝑃 𝑑π‘₯ βˆ’ ∫ 𝜌 (βˆ’Ξ¦) 𝑑π‘₯] π›Ύβˆ’1 Ξ© Ξ©

Ξ©

2 + (𝑁 βˆ’ 2) [2𝐸 (𝑑) βˆ’ ∫ 𝑃 𝑑π‘₯ βˆ’ ∫ 𝜌 |𝑒|2 𝑑π‘₯] π›Ύβˆ’1 Ξ© Ξ©

It follows that lim inf

π‘›β†’βˆž

𝑅 (𝑑) √ β‰₯ πœ‹π‘€. 𝑑

(58)

= [2 βˆ’ (𝑁 βˆ’ 2)] ∫ 𝜌 |𝑒|2 𝑑π‘₯ Ξ©

+ [2𝑁 βˆ’

2 (𝑁 βˆ’ 2) ] ∫ 𝑃 𝑑π‘₯ + 2 (𝑁 βˆ’ 2) 𝐸 (𝑑) π›Ύβˆ’1 Ξ©

Finally, we can give the blowup result. Proposition 9. If 𝛿 = 1, 𝑁 β‰₯ 4, 1 < 𝛾 ≀ 2(𝑁 βˆ’ 1)/𝑁, and 𝐸(0) < 0, then the classical solutions of (1) blow up in finite time.

β‰₯ 2 (𝑁 βˆ’ 2) 𝐸 (𝑑) = 2 (𝑁 βˆ’ 2) 𝐸 (0) . (50)

Proof. Case 1 (𝛽 = 0). As before, we have, from Propositions 5 and 7, that

Thus, 𝐻 (𝑑) β‰₯ (𝑁 βˆ’ 2) 𝐸 (0) 𝑑2 + 𝐻̇ (0) 𝑑 + 𝐻 (0) .

(51)

In view of inequality (49), we have 𝑅 (𝑑) √ (𝑁 βˆ’ 2) 𝐸 (0) 𝐻̇ (0) 𝐻 (0) . β‰₯ + + 𝑑 𝑀 𝑀𝑑 𝑀𝑑2

2 (𝑁 βˆ’ 2) ] ∫ 𝑃 𝑑π‘₯ 𝐻̈ (𝑑) = (4 βˆ’ 𝑁) ∫ 𝜌 |𝑒|2 𝑑π‘₯ + [2𝑁 βˆ’ π›Ύβˆ’1 Ξ© Ξ© + 2 (𝑁 βˆ’ 2) 𝐸 (𝑑)

(52)

≀ 0 + 0 + 2 (𝑁 βˆ’ 2) 𝐸 (𝑑) = 2 (𝑁 βˆ’ 2) 𝐸 (0) . (59)

Thus, 𝑅 (𝑑) √ (𝑁 βˆ’ 2) 𝐸 (0) β‰₯ . lim inf π‘‘β†’βˆž 𝑑 𝑀

It follows that (53)

𝐻 (𝑑) ≀ (𝑁 βˆ’ 2) 𝐸 (0) 𝑑2 + 𝐻̇ (0) 𝑑 + 𝐻 (0) .

(60)

6

The Scientific World Journal

Suppose the solutions exist globally; then for sufficient large 𝑑, we see that 𝐻(𝑑) is negative as the leading coefficient of the right hand side of (60) is negative. However, 𝐻(𝑑) is nonnegative by definition (35). This is a contradiction. As a result, the solutions blow up in finite time.

𝐻̈ (𝑑) + 𝛽𝐻̇ (𝑑) ≀ 2 (𝑁 βˆ’ 2) 𝐸 (0) .

(61)

It follows by multipying an integral factor 𝑒𝛽𝑑 on both sides and taking integration that 2 (𝑁 βˆ’ 2) 𝐸 (0) 𝑑 𝛽

(62)

for some constants 𝐴 1 and 𝐴 2 . Note that this implies that 𝐻(𝑑) is negative for sufficient large 𝑑 as 𝛽 > 0 and (𝑁 βˆ’ 2)𝐸(0) < 0. Therefore, the solutions blow up in finite time.

Appendix

1 ∫ ( |𝑒|2 βˆ‡ β‹… (πœŒπ‘’) βˆ’ 𝑒 β‹… [βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒)]) 𝑑π‘₯ = 0. Ξ© 2

(A.1)

Proof. Firstly, by divergence theorem,

Ξ©

Ξ©

= ∫ (|𝑒|2 βˆ‡ β‹… (πœŒπ‘’) + =∫

Ξ©

1 (πœŒπ‘’) β‹… βˆ‡ |𝑒|2 ) 𝑑π‘₯ 2

1 2 |𝑒| βˆ‡ β‹… (πœŒπ‘’) 𝑑π‘₯. 2

(A.4)

by (A.2) .

Thus, equality (A.1) is established.

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment This research paper is partially supported by Grant (MIT/SRG02/14-15) from the Department of Mathematics and Information Technology of the Hong Kong Institute of Education.

References

We here complement the proof of Lemma 2 by proving the equality (17); namely,

∫

∫ 𝑒 β‹… [βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒)] 𝑑π‘₯

Ξ©

Case 2 (𝛽 =ΜΈ 0). Now (59) becomes

𝐻 (𝑑) ≀ 𝐴 1 + 𝐴 2 π‘’βˆ’π›½π‘‘ +

Thus,

1 2 1 |𝑒| βˆ‡ β‹… (πœŒπ‘’) 𝑑π‘₯ = βˆ’ ∫ (πœŒπ‘’) β‹… βˆ‡ |𝑒|2 𝑑π‘₯. 2 2 Ξ©

(A.2)

Secondly, by definitions of the operations, 𝑁

𝑁

𝑗=1

𝑖=1

𝑁

𝑁

𝑗=1

𝑖=1

𝑒 β‹… [βˆ‡ β‹… (πœŒπ‘’ βŠ— 𝑒)] = βˆ‘ 𝑒𝑗 (βˆ‘πœ•π‘– (πœŒπ‘’π‘– 𝑒𝑗 ))

= βˆ‘ 𝑒𝑗 (βˆ‘ (𝑒𝑗 πœ•π‘– (πœŒπ‘’π‘– ) + πœŒπ‘’π‘– πœ•π‘– 𝑒𝑗 )) 𝑁

𝑁

𝑁

𝑁

𝑗=1

𝑖=1

𝑗=1

𝑖=1

= βˆ‘ 𝑒𝑗2 βˆ‘πœ•π‘– (πœŒπ‘’π‘– ) + βˆ‘π‘’π‘— βˆ‘πœŒπ‘’π‘– πœ•π‘– 𝑒𝑗 𝑁 𝑁 1 = |𝑒|2 βˆ‡ β‹… (πœŒπ‘’) + βˆ‘πœŒπ‘’π‘– βˆ‘ πœ•π‘– 𝑒𝑗2 𝑖=1 𝑗=1 2

1𝑁 = |𝑒|2 βˆ‡ β‹… (πœŒπ‘’) + βˆ‘πœŒπ‘’π‘– πœ•π‘– |𝑒|2 2 𝑖=1 = |𝑒|2 βˆ‡ β‹… (πœŒπ‘’) +

1 (πœŒπ‘’) β‹… βˆ‡ |𝑒|2 . 2

(A.3)

[1] S. Wong and M. W. Yuen, β€œBlowup phenomena for the compressible euler and Euler-Poisson equations with initial functional conditions,” The Scientific World Journal, vol. 2014, Article ID 580871, 5 pages, 2014. [2] C. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York, NY, USA, 1984. [3] P.-L. Lions, Mathematical Topics in Fluid Mechanics, vol. 1-2, The Clarendon Press, Oxford, UK, 1998. [4] B. Perthame, β€œNonexistence of global solutions to euler-poisson equations for repulsive forces,” Japan Journal of Applied Mathematics, vol. 7, no. 2, pp. 363–367, 1990. [5] M. W. Yuen, β€œStabilities for Euler-Poisson equations in some special dimensions,” Journal of Mathematical Analysis and Applications, vol. 344, no. 1, pp. 145–156, 2008. [6] T. C. Sideris, β€œFormation of singularities in three-dimensional compressible fluids,” Communications in Mathematical Physics, vol. 101, no. 4, pp. 475–485, 1985. [7] T. Makino, β€œOn a local existence theorem for the evolution equation of gaseous stars,” in Patterns and waves, vol. 18, pp. 459–479, North-Holland, Amsterdam, The Netherlands, 1986. [8] T. Makino, β€œBlowing up solutions of the Euler-Poission equation for the evolution of the gaseous stars,” Transport Theory and Statistical Physics, vol. 21, pp. 615–624, 1992. [9] T. Makino and B. Perthame, β€œSur les Solutions a symmetric spherique de lequation d’Euler- poisson Pour levolution d’etoiles gazeuses, [On radially symmetric solutions of the Euler-Poisson equation for the evolution of gaseous stars],” Japan Journal of Applied Mathematics, vol. 7, pp. 165–170, 1990 (French). [10] Y. B. Deng, T.-P. Liu, T. Yang, and Z.-A. Yao, β€œSolutions of euler-poisson equations for gaseous stars,” Archive for Rational Mechanics and Analysis, vol. 164, no. 3, pp. 261–285, 2002.

Stabilities for nonisentropic Euler-Poisson equations.

We establish the stabilities and blowup results for the nonisentropic Euler-Poisson equations by the energy method. By analysing the second inertia, w...
508KB Sizes 0 Downloads 9 Views