research papers

ISSN 2053-2296

Received 12 May 2015 Accepted 12 June 2015 Edited by D. S. Yufit, University of Durham, England Keywords: 2-amino-4-sulfobenzoic acid; copper(II) complex; supramolecular coordination polymers; one-dimensional coordination polymer; dehydration–rehydration behaviour; crystal structure; coordination chemistry. CCDC references: 1406470; 1406469 Supporting information: this article has supporting information at journals.iucr.org/c

Synthesis, structure and characterization of two copper(II) supramolecular coordination polymers based on a multifunctional ligand 2-amino-4-sulfobenzoic acid Yan Wei, Lei Zhang, Meng-Jie Wang, Si-Chun Chen, Zi-Hao Wang and Kou-Lin Zhang* Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People’s Republic of China. *Correspondence e-mail: [email protected]

Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties. The reactions of copper(II) with 2-amino-4-sulfobenzoic acid (H2asba) in the presence/ absence of the auxiliary chelating ligand 1,10-phenanthroline (phen) under ambient conditions yielded two supramolecular coordination polymers, namely (3-amino-4-carboxybenzene-1-sulfonato-O1)bis(1,10-phenanthroline-2N,N0 )copper(II) 3-amino-4-carboxybenzene-1-sulfonate monohydrate, [Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)H2O, (1), and catena-poly[[diaquacopper(II)]0 -3-amino-4-carboxylatobenzene-1-sulfonato-2O4:O4 ], [Cu(C7H6N2O5S)(H2O)2]n, (2). The products were characterized by FT–IR spectroscopy, thermogravimetric analysis (TGA), solid-state UV–Vis spectroscopy and single-crystal X-ray diffraction analysis, as well as by variable-temperature powder X-ray diffraction analysis (VT-PXRD). Intermolecular – stacking interactions in (1) link the mononuclear copper(II) cation units into a supramolecular polymeric chain, which is further extended into a supramolecular double chain through interchain hydrogen bonds. Supramolecular double chains are then extended into a two-dimensional supramolecular double layer through hydrogen bonds between the lattice Hasba anions, H2O molecules and double chains. Left- and right-handed 21 helices formed by the Hasba anions are arranged alternately within the two-dimensional supramolecular double layers. Complex (2) exhibits a polymeric chain which is further extended into a threedimensional supramolecular network through interchain hydrogen bonds. Complex (1) shows a reversible dehydration–rehydration behaviour, while complex (2) shows an irreversible dehydration–rehydration behaviour.

1. Introduction

# 2015 International Union of Crystallography

Acta Cryst. (2015). C71

The design and synthesis of coordination polymers (CPs) is of current interest in coordination chemistry and supramolecular chemistry due to the novel multidimensionality and significant variations in the architecture of these compounds (Zhai et al., 2006; Moriya et al., 2012; Smolen´ski et al., 2012), as well as their unique functionalities and potential applications (Heinze & Reinhart, 2006; Jammi et al., 2008; Sotnik et al., 2015; Salgado et al., 2015). It is well known that the construction of CPs depends on several factors, such as the nature of the metal ions and organic ligands used, the molar ratio of the reactants and the reaction conditions (e.g. reaction time, solvent, pH and temperature) (Wang et al., 2015; Kumar et al., 2015). For the purpose of acquiring novel structures with required http://dx.doi.org/10.1107/S2053229615011432

1 of 8

research papers functionalities, many chemists have focused their attention on the rational design of organic ligands, such as aromatic polycarboxylates (Bernhard et al., 2002; Fowler et al., 2011). Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties (Casarin et al., 2004; Karabach et al., 2006). The functions of CPs depend on the metal centres and their framework architectures. A slight variation in the structure may change the related functional features. Copper(II) ions are frequently chosen for the assembly of CPs for the following reasons: (i) the copper(II) ion has several coordination modes, i.e. tetrahedral, trigonal bipyramidal, tetragonal pyramidal, octahedral, and so on; (ii) copper(II) coordination compounds often show interesting chemical– physical properties (Li et al., 2008; Guha et al., 2012; Nath et al., 2014).

(phen)2](Hasba)H2O, (1), and [Cu(asba)(H2O)2]n, (2) (see Scheme). The solid-state UV–Vis spectra of (1) and (2) have been recorded, and the thermal stabilities, as well as the dehydration–rehydration behaviour, have also been studied.

2. Experimental 2.1. Materials and characterization

The reagents used in the syntheses of (1) and (2) were purchased commercially and were used without further purification. FT–IR spectra (4000–400cm1) were recorded from KBr pellets on a Magna750 FT–IR spectrophotometer. Powder X-ray diffraction data were collected on a computercontrolled Bruker D8 Advanced XRD diffractometer oper˚ ) at a scanning rate of ating with Cu K radiation ( = 1.5418 A  1  0.04 s from 5 to 50 using a Va˚ntec solid-state detector. The solid-state UV–Vis diffuse reflectance spectra were measured on a Varian Cary 5000. Thermogravimetric analysis (TGA) was taken on a NETZSCH STA 409 PG/PC instrument using a heating rate of 10 K min1 under N2 (10 ml min1). Graphs of relative intensity versus angle (2) were plotted from the raw data using Origin 6.1 (www.originlab.com). 2.2. Synthesis and crystallization

The multifunctional sulfosalicylic acid ligand has been used previously as an efficient ‘building block’ for the construction of novel CuII supramolecular CPs (Marzotto et al., 2001; Fan & Zhu, 2007). To the best of our knowledge, there are no reported CuII coordination complexes with multifunctional amino-substituted sulfobenzoate ligands and only four novel main group CPs based on 2-amino-4-sulfobenzoic acid (H2asba) have been synthesized and characterized in detail (Zhang et al., 2014). 1,10-Phenanthroline (phen) has been used to build supramolecular architectures due to its great potential to form – stacking interactions. Based upon the above considerations, we report here the syntheses and characterization of the first two copper(II) supramolecular CPs with H2asba, namely, [Cu(Hasba)-

2 of 8

Wei et al.



CuII complexes of C7H6N2O5S

2.2.1. Synthesis of [Cu(Hasba)(phen)2](Hasba)H2O, (1). A mixture of H2asba (0.044 g, 0.2 mmol) and NaOH (0.002 g, 0.1 mmol) was dissolved in water (6 ml) and an aqueous solution of CuSO45H2O (0.025 g, 0.1 mmol) in water (6 ml) was added under stirring. To this solution, phen (0.040 g, 0.2 mmol) in water (6 ml) was added and the resulting solution filtered after 4 h. The filtrate was kept at ambient temperature for several days and blue crystals formed in 66.6% yield (based on CuSO45H2O). FT–IR (KBr, , cm1): 3467 (s), 3057 (w), 1691 (s), 1607 (s), 1517 (w), 1426 (s), 1335 (w), 1297 (s), 1180 (s), 1103 (s), 1012 (s), 857 (s), 715 (s), 611 (s). 2.2.2. Synthesis of [Cu(asba)(H2O)2]n, (2). A mixture of H2asba (0.044 g, 0.2 mmol) and NaOH (0.008 g, 0.2 mmol) was dissolved in methanol (10 ml), and an aqueous solution of Cu(NO3)23H2O (0.024 g, 0.1 mmol) in water (10 ml) was added under stirring. The resulting solution was filtered after about 4 h. The filtrate was kept at ambient temperature for several days and green crystals formed in 46.7% yield [based on Cu(NO3)23H2O]. FT–IR (KBr, , cm1): 3288 (s), 3094 (m), 1607 (m), 1543 (s), 1426 (s), 1220 (s), 1129 (s), 1038 (s), 908 (w), 715 (s), 638 (m). 2.3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were positioned geometrically and constrained using the riding˚ and Uiso(H) = model approximation, with aryl C—H = 0.93 A 1.2Ueq(C). The amino H atoms were also added geometrically, ˚ . The H atoms of water were firstly found with N—H = 0.86 A in a difference Fourier map and then fixed with an O—H ˚ and with Uiso(H) = 1.5Ueq(N,O). distance of 0.85 A Acta Cryst. (2015). C71

research papers Table 1 Experimental details.

Crystal data Chemical formula Mr Crystal system, space group Temperature (K) ˚) a, b, c (A ( ) ˚ 3) V (A Z Radiation type  (mm1) Crystal size (mm) Data collection Diffractometer Absorption correction Tmin, Tmax No. of measured, independent and observed [I > 2 (I)] reflections Rint ˚ 1) (sin /)max (A Refinement R[F 2 > 2 (F 2)], wR(F 2), S No. of reflections No. of parameters No. of restraints H-atom treatment ˚ 3)  max,  min (e A

(1)

(2)

[Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)H2O 874.37 Monoclinic, P21/c 296 11.7178 (14), 8.2765 (9), 37.404 (4) 99.806 (5) 3574.5 (7) 4 Mo K 0.80 0.25  0.20  0.15

[Cu(C7H6N2O5S)(H2O)2] 314.77 Monoclinic, P21/c 296 8.4858 (9), 9.9337 (11), 14.5512 (13) 120.445 (5) 1057.47 (19) 4 Mo K 2.29 0.30  0.28  0.20

Bruker APEXII CCD area-detector diffractometer Empirical (using intensity measurements) (SADABS; Bruker, 2003) 0.825, 0.887 52816, 8212, 6137

Bruker APEXII CCD area-detector diffractometer Empirical (using intensity measurements) (SADABS; Bruker, 2003) 0.509, 0.633 15782, 2426, 2186

0.048 0.651

0.027 0.651

0.043, 0.109, 1.02 8212 527 10 H-atom parameters constrained 0.66, 0.46

0.024, 0.065, 1.07 2426 154 7 H-atom parameters constrained 0.43, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

3. Results and discussion 3.1. Structural description of [Cu(Hasba)(phen)2](Hasba)H2O, (1)

The asymmetric unit of (1) consists of one CuII ion, one coordinated Hasba ligand, an Hasba counter-ion, two chelating phen ligands and one lattice water molecule. The pentacoordinated CuII ion is bound by sulfonate atom O1

from the Hasba ligand (denoted L1) and by four N atoms from two phen ligands, and exhibits a distorted trigonal bipyramidal coordination geometry (Fig. 1). The Cu—O and Cu—N bond lengths (Table 2) are similar to those in reported CuII coordination complexes based on the multifunctional 5-sulfosalicylic acid ligand (Song et al., 2007; Du et al., 2011). The lattice Hasba anion (denoted L2) does not coordinate to the central CuII ion. Weak interactions exist extensively in the lattice. It should be noted that there are strong intramolecular – stacking interactions between the C25–C30 benzene ring of L1 and the C18/C19/C22–C24/N4 ring of phenanthroline [centroid– ˚ ] within the mononuclear CuII centroid distance = 3.5388 (3) A cation unit. – stacking interactions also exist between the C13–C17/N3 pyridine ring of phenanthroline and the C25–C30 ring of L1 in an adjacent mononuclear cation unit [centroid– Table 2 ˚ ,  ) for (1). Selected geometric parameters (A

Figure 1 The coordination environment of the CuII atom in (1). Some of the H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The green dashed lines represent intermolecular – stacking interactions. Acta Cryst. (2015). C71

Cu1—N2 Cu1—N4 Cu1—N3

1.9731 (19) 1.9806 (18) 2.062 (2)

Cu1—N1 Cu1—O1

2.077 (2) 2.0824 (18)

N2—Cu1—N4 N2—Cu1—N3 N4—Cu1—N3 N2—Cu1—N1 N4—Cu1—N1

178.95 (9) 96.81 (9) 82.18 (8) 81.80 (8) 98.94 (8)

N2—Cu1—O1 N4—Cu1—O1 N3—Cu1—O1 N1—Cu1—O1 N3—Cu1—N1

90.22 (8) 90.15 (8) 125.80 (7) 113.92 (7) 120.28 (8)

Wei et al.



CuII complexes of C7H6N2O5S

3 of 8

research papers Table 3 ˚ ,  ) for (1). Hydrogen-bond geometry (A D—H  A

D—H

H  A

D  A

D—H  A

N5—H5A  O6 N5—H5B  O4 N6—H6A  O1i N6—H6A  O3i N6—H6B  O9 O5—H5  O8ii O10—H10A  O1W iii O1W—H1WB  O6 O1W—H1WA  O2

0.86 0.86 0.86 0.86 0.86 0.82 0.82 0.82 0.93

2.28 2.08 2.64 2.51 2.03 1.84 1.81 2.06 1.91

3.109 (3) 2.703 (3) 3.207 (3) 3.365 (3) 2.664 (3) 2.651 (2) 2.631 (3) 2.858 (3) 2.832 (3)

162 129 125 173 130 168 179 164 171

Symmetry codes: (i) x þ 1; y; z; (ii) x þ 1; y; z þ 2; (iii) x þ 1; y þ 12; z þ 32.

Figure 2 A view of the supramolecular chain in (1) formed through intermolecular – stacking interactions (pink dashed lines) and S—O   interactions (red dashed lines), further extended into a supramolecular double chain through interchain hydrogen bonds (blue dashed lines).

˚ ]. Furthermore, an anion   centroid distance = 3.6377 (3) A interaction exists between the mononuclear cation units [S1— ˚ ; Cg is the centroid of the C4–C9 ring at (x, O3  Cg = 3.363 A y  1, z)]. As a result, a one-dimensional supramolecular chain is formed. The one-dimensional supramolecular chain is further linked to an adjacent chain through hydrogen bonds between the uncoordinated carboxylate O4 atom in L1 and amino atom N5 in an adjacent one-dimensional supramolecular chain (N5—H5B  O4; Table 3), leading to the formation of a supramolecular double chain (Fig. 2). The lattice anion L2 lies between the supramolecular double

chains and links the double chains through hydrogen bonds between carboxylate atom O5 of L2 and sulfonate atom O8 of L1 (O5—H5  O8ii; see Table 3 for symmetry code). The lattice water molecules act as bridges linking the mononuclear cation units and the L2 anions through hydrogen bonds to both uncoordinated sulfonate atom O2 of L1 and atom O6 of L2 (O1W—H1WA  O2 and O1W—H1WB  O6; Table 3), resulting in the formation of a two-dimensional supramolecular double layer (Fig. 3). The most interesting feature of this architecture is that the right- and left-handed 21 supramolecular helices are arranged alternately within the two-dimensional double layers (Fig. 4). Interlayer – stacking interactions between the lattice Hasba anion and the phen ligands of the two-dimensional supramolecular double layer [centroid–centroid distance = ˚ ] lead to the formation of a three-dimensional 3.6771 (3) A supramolecular network (Fig. 5). 3.2. Structural description of [Cu(asba)(H2O)2]n, (2)

The asymmetric unit of (2) consists of one CuII atom, one asba2 ligand and two coordinated water molecules. The pentacoordinated CuII ion exhibits a distorted trigonal

Figure 3 Supramolecular double chains in (1) further extended into a twodimensional supramolecular double layer through hydrogen bonds between the lattice Hasba anions, H2O molecules and supramolecular double chains.

4 of 8

Wei et al.



CuII complexes of C7H6N2O5S

Figure 4 A view showing the left- and right-handed helices in (1) arranged alternately within the two-dimensional double layer. Acta Cryst. (2015). C71

research papers Table 4 ˚ ,  ) for (2). Selected geometric parameters (A O1W—Cu1 Cu1—O2i Cu1—O1

2.243 (4) 1.932 (4) 1.969 (4)

Cu1—O2W Cu1—N1 O2—Cu1ii

1.985 (4) 1.990 (4) 1.932 (4)

O1—Cu1—O2W O2i—Cu1—N1 O2i—Cu1—O1W O2W—Cu1—O1W O2i—Cu1—O1

87.87 (17) 97.87 (17) 89.85 (17) 96.09 (18) 174.62 (16)

O1—Cu1—N1 O2W—Cu1—N1 O1—Cu1—O1W N1—Cu1—O1W O2i—Cu1—O2W

87.11 (17) 161.16 (18) 87.13 (17) 101.78 (18) 88.03 (17)

Symmetry codes: (i) x þ 2; y þ 12; z þ 12; (ii) x þ 2; y  12; z þ 12.

Table 5 Figure 5 The three-dimensional supramolecular network in (1) formed through interlayer – stacking interactions between the lattice Hasba anion and the phen ligands of adjacent two-dimensional supramolecular double layers.

˚ ,  ) for (2). Hydrogen-bond geometry (A D—H  A ii

O1W—H1WB  O5 N1—H1A  O4iii N1—H1B  O3iv O2W—H2WB  O5v O2W—H2WA  O3vi

D—H

H  A

D  A

D—H  A

0.93 0.90 0.90 0.85 0.86

1.86 2.02 2.18 1.98 1.86

2.786 (7) 2.864 (6) 2.995 (6) 2.786 (6) 2.715 (6)

176 156 151 159 172

Symmetry codes: (ii) x þ 2; y  12; z þ 12; (iii) x þ 1; y þ 1; z; (iv) x; y þ 32; z þ 12; (v) x þ 1; y þ 32; z þ 12; (vi) x þ 2; y þ 1; z.

Figure 6 The coordination environment of the CuII atom in (2). Some of the H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x + 2, y + 12, z + 12; (ii) x + 2, y  12, z + 12.]

and O2i; symmetry code: (i) x + 2, y + 12, z + 12] from two asba2 ligands in the apical positions (Fig. 6). The Cu—O and Cu—N bond lengths (Table 4) are similar to those in other reported CuII complexes (Deng et al., 2008; Moriya et al., 2012). Adjacent CuII ions are bridged by two carboxylate O atoms of the asba2 ligand in a syn–anti conformation to form an infinite polymeric chain (Fig. 7). The sulfonate group does not take part in coordination with the central CuII ion. The one-dimensional coordination polymer chains are further extended into a supramolecular network by interchain hydrogen bonds between the O2W water molecules and sulfonate O atoms of the asba2 ligand (Table 5, and Figs. 8 and 9). 3.3. FT–IR spectra and thermal stability

bipyramidal coordination geometry with two water O atoms (O1W and O2W) and amino atom N1 from the asba2 ligand in the equatorial position and two carboxylate O atoms [O1

The FT–IR spectral data show features attributable to carboxylate stretching vibrations for (1) and (2). The band at 1691 cm1 indicates protonation of the carboxylate group of

Figure 7 A view of the polymeric copper(II) chain of (2), showing the coordination mode of the asba2 ligand. Acta Cryst. (2015). C71

Wei et al.



CuII complexes of C7H6N2O5S

5 of 8

research papers

Figure 8 A view of the two-dimensional supramolecular architecture of (2) formed through interchain N1—H1A  O3iv hydrogen bonds (red dashed lines) [symmetry code: (iv) x, y + 32, z + 12].

Hasba in (1). The characteristic bands of carboxylate groups appear in the range 1540–1610 cm1 for asymmetric stretching and in the range 1420–1550 cm1 for symmetric stretching. The characteristic stretching vibrations for the sulfonate groups in (1) and (2) are located at 1180 and 1220 cm1, respectively. The broad bands centred on 3467 and 3288 cm1 correspond to the mixed vibrations of both the –OH group of H2O and the –NH2 group in (1) and (2), respectively (Zhang et al., 2014). To study the thermal stability of the compounds, thermogravimetric analysis (TGA) was performed under flowing N2

Figure 10 The thermogravimetric (TG) curves of (1) (black) and (2) (red).

with a heating rate of 10 K min1 (Fig. 10). The TGA curves of (1) and (2) exhibit two main steps of weight loss. For (1), a weight loss of 2.4% in the temperature range 371–458 K is in agreement with the release of one lattice water molecule (calculated 2.1%). The second step of weight loss from 548 K corresponds to the combustion of the organic groups. For complex (2), the weight loss of 11.6% from 372 to 469 K matches very well with the release of two coordinated water molecules (calculated 11.4%). The second step of weight loss from 563 K corresponds to the disintegration of the polymeric chain.

Figure 11 Figure 9 A view of the three-dimensional supramolecular architecture formed through interlayer O2W—H2WB  O5v hydrogen bonds (green dashed lines) [symmetry code: (v) x + 1, y + 32, z + 12].

6 of 8

Wei et al.



CuII complexes of C7H6N2O5S

VT-PXRD patterns for (1), showing (black) the simulated XRD pattern calculated from single-crystal data with Mercury (Macrae et al., 2008), (red) the sample as-synthesized, (green) after removal of the water molecules at 458 K and (blue) after soaking in water vapour for ca 3 d at room temperature. Acta Cryst. (2015). C71

research papers

Figure 12 VT-PXRD patterns for (2), showing (black) the simulated XRD pattern calculated from single-crystal data with Mercury (Macrae et al., 2008), (red) the sample as-synthesized, (green) after removal of the water molecules at 469 K and (blue) after soaking in water vapour for ca one week at room temperature.

3.4. Dehydration–rehydration behaviour

Powder X-ray diffraction analysis (PXRD) was used to confirm the phase purity of the bulk samples of (1) and (2) at room temperature (Figs. 11 and 12). The experimental diffraction patterns of the bulk samples of (1) and (2) are consistent with the corresponding simulated patterns, indicating that the products are the homogeneous pure phases. Thermogravimetric analysis (TGA) shows clearly that the interstitial water molecule in (1) and the coordinated water

molecules in (2) can be removed upon heating. To study the dehydration–rehydration properties of (1) and (2), an in situ variable-temperature powder X-ray diffraction analysis (VTPXRD) was performed in the air over the temperature profile RT–458 K–RT for (1) (Fig. 11) and RT–469 K–RT (RT = room temperature, 298 K) for (2) (Fig. 12). It should be pointed out that the dehydrated phases of (1) and (2) retain crystallinity after the loss of the water molecules, but the structures of the dehydrated materials have changed, as supported by the in situ VT-PXRD patterns at 458 K for (1) and 469 K for (2). Remarkably, the VT-PXRD patterns show clearly that it takes about one week for the dehydrated phase of (1) to absorb the water molecules and revert to the original structure in the presence of water vapour for about 3 d. Compound (2) shows quite a different dehydration–rehydration behaviour to that observed for (1), i.e. the rehydrated phase of (2) retains the same structure as the dehydrated phase after exposure to water vapour even after about one week (Fig. 12). Thus, the dehydration of (2) is irreversible. The framework integrity of (1) can be maintained after a number of desorption–adsorption cycles, which indicates that this compound could possibly be used as a water adsorbent. 3.5. UV–Vis spectra

In order to characterize the title compounds in more detail, the solid–state UV absorption spectra were measured. The UV–Vis absorption spectra of the free acid H2asba, (1) and (2) are shown in Fig. 13. All three compounds show broad intense absorption peaks at 220–370 nm, which can be ascribed to –* transitions. For complexes (1) and (2), the spectra show very broad bands centred at 830 and 726 nm, respectively, which could be attributed to the 2B1g!2B2g and 2B1g!2A1g transitions characteristic of CuII coordination compounds with a distorted trigonal bipyramidal coordination geometry (Li et al., 2015; Mohamed et al., 2015). The red shifts of the absorption band in (1) may be caused by the coordination effect of the chelating 1,10-phenanthroline ligands, which have a large delocalization effect.

4. Conclusion

Figure 13 The solid-state UV–Vis absorption spectra for H2asba (black), (1) (red) and (2) (green). Acta Cryst. (2015). C71

In summary, two supramolecular CuII CPs based on the multifunctional ligand H2asba have been prepared and characterized. In the presence of the auxiliary chelating 1,10phenanthroline ligand, a mononuclear ionic complex, (1), which is further extended into a three-dimensional supramolecular polymeric network through hydrogen bonds and – stacking interactions, was formed. The second complex, (2), exhibits a one-dimensional polymeric chain structure, further extended into a three-dimensional supramolecular architecture. Complexes (1) and (2) have quite different dehydration–rehydration behaviours. Complex (1) shows a greatly red-shifted CuII d–d transition absorption band compared with (2). Further work is underway in our laboratory to prepare novel supramolecular coordination polymers Wei et al.



CuII complexes of C7H6N2O5S

7 of 8

research papers with tuneable functional properties based on the multifunctional H2 asba ligand.

Acknowledgements We gratefully acknowledge the Natural Science Foundation of Jiangsu Province (grant No. BK2012680), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Analysis and Test Center of Yangzhou University, the Innovative Science and Technology Training Program for Undergraduate Students of Yangzhou University and the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province.

References Bernhard, S., Takada, K., Jenkins, D. & Abruna, H. D. (2002). Inorg. Chem. 41, 765–772. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Casarin, M., Corvaja, C., Nicola, C. D., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2004). Inorg. Chem. 44, 6265–6276. Deng, H., Qiu, Y. C., Daiguebonne, C., Kerbellec, N., Guillou, O., Zeller, M. & Batten, S. R. (2008). Inorg. Chem. 47, 5866–5872. Du, Z. X., Li, J. X. & Han, R. Q. (2011). J. Chem. Crystallogr. 41, 34–38. Fan, S. R. & Zhu, L. G. (2007). J. Mol. Struct. 827, 188–194. Fowler, D. A., Mossine, A. V., Beavers, C. M., Teat, S. J., Dalgarno, S. J. & Atwood, J. W. (2011). J. Am. Chem. Soc. 133, 11069–11071. Guha, P. M., Phan, H., Kinyon, J. S., Brotherton, W. S., Sreenath, K., Simmons, J. T., Wang, Z. X., Clark, R. J., Dalal, N. S., Shatruk, M. & Zhu, L. (2012). Inorg. Chem. 51, 3465–3477. Heinze, K. & Reinhart, A. (2006). Inorg. Chem. 45, 2695–2703.

8 of 8

Wei et al.



CuII complexes of C7H6N2O5S

Jammi, S., Rout, L., Saha, P., Akkilagunta, V. K., Sanyasi, S. & Punniyamurthy, T. (2008). Inorg. Chem. 47, 5093–5098. Karabach, Y. Y., Kirillov, A. M., Fatima, M. C., Silva, G. D., Kopylovich, M. N. & Pombeiro, A. J. (2006). Cryst. Growth Des. 6, 2200–2203. Kumar, S., Sharma, R. P., Saini, A., Venugopalan, P. & Ferretti, V. (2015). J. Mol. Struct. 1083, 398–404. Li, X., Cheng, D. Y., Lin, J. L., Li, Z. F. & Zheng, Y. Q. (2008). Inorg. Chem. 8, 2853–2861. Li, Y., Yao, X. Q., Xiao, G. B., Ma, H. C., Yang, Y. X. & Liu, J. C. (2015). J. Mol. Struct. 1089, 16–19. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Marzotto, A., Clemente, D. A., Gerola, T. & Valle, G. (2001). Polyhedron, 20, 1079–1087. Mohamed, T. A., Shaaban, I. A., Farag, R. S., Zoghaib, W. M. & Afifi, M. S. (2015). Spectrochim Acta Part A, 135, 417–427. Moriya, M., Tominaga, S., Hashimoto, T., Tanifuji, K., Matsumoto, T., Ohki, Y., Tatsumi, K., Kaneshiro, J., Uesu, Y., Sakamoto, W. & Yogo, T. (2012). Inorg. Chem. 51, 4689–4693. Nath, J. K., Mondal, A., Powell, A. K. & Baruah, J. B. (2014). Cryst. Growth Des. 14, 4735–4748. Salgado, M. D., Weingartz, L. E. & Laduca, R. L. (2015). Inorg. Chim. Acta, 426, 202–210. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Smolen´ski, P., Kłak, J., Nesterov, D. S. & Kirillov, A. M. (2012). Cryst. Growth Des. 12, 5852–5857. Song, J. F., Chen, Y., Li, Z. G., Zhou, R. S., Xu, X. Y., Xu, J. Q. & Wang, T. G. (2007). Polyhedron, 26, 4397–4410. Sotnik, S. A., Gavrilenko, K. S., Lytvynenko, A. S. & Kolotilov, S. V. (2015). Inorg. Chim. Acta, 426, 119–125. Wang, X. L., Liu, D. N., Luan, J., Lin, H. Y., Le, M. & Liu, G. C. (2015). Inorg. Chim. Acta, 426, 39–44. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Zhai, Q. G., Lu, C. Z., Chen, S. M., Xu, X. J. & Yang, W. B. (2006). Cryst. Growth Des. 6, 1393–1398. Zhang, K. L., Zhong, Z. Y., Zhang, L., Jing, C. Y., Daniels, L. M. & Walton, R. I. (2014). Dalton Trans. 43, 11597–11610.

Acta Cryst. (2015). C71

supporting information

supporting information Acta Cryst. (2015). C71

[doi:10.1107/S2053229615011432]

Synthesis, structure and characterization of two copper(II) supramolecular coordination polymers based on a multifunctional ligand 2-amino-4-sulfobenzoic acid Yan Wei, Lei Zhang, Meng-Jie Wang, Si-Chun Chen, Zi-Hao Wang and Kou-Lin Zhang Computing details For both compounds, data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010). (zl9) (3-Amino-4-carboxybenzene-1-sulfonato-κO1)bis(1,10-phenanthroline-κ2N,N′)copper(II) 3-amino-4carboxybenzene-1-sulfonate monohydrate Crystal data [Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)·H2O Mr = 874.37 Monoclinic, P21/c Hall symbol: -P2ybc a = 11.7178 (14) Å b = 8.2765 (9) Å c = 37.404 (4) Å β = 99.806 (5)° V = 3574.5 (7) Å3 Z=4

F(000) = 1796 Dx = 1.625 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9881 reflections θ = 2.5–26.9° µ = 0.80 mm−1 T = 296 K Massive, green 0.25 × 0.2 × 0.15 mm

Data collection Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2003) Tmin = 0.825, Tmax = 0.887

52816 measured reflections 8212 independent reflections 6137 reflections with I > 2σ(I) Rint = 0.048 θmax = 27.5°, θmin = 1.9° h = −15→15 k = −10→10 l = −48→48

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.043 wR(F2) = 0.109

Acta Cryst. (2015). C71

S = 1.02 8212 reflections 527 parameters 10 restraints

sup-1

supporting information Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0505P)2 + 2.1869P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.66 e Å−3 Δρmin = −0.46 e Å−3

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

C1 H1 C2 H2 C3 H3 C4 C5 C6 C7 C8 H8 C9 H9 C10 H10 C11 H11 C12 H12 C13 H13 C14 H14 C15 H15 C16 C17 C18

x

y

z

Uiso*/Ueq

−0.1607 (2) −0.1299 −0.2534 (3) −0.2825 −0.3006 (3) −0.3615 −0.2579 (2) −0.1637 (2) −0.1142 (2) −0.1639 (3) −0.2604 (3) −0.2939 −0.3041 (3) −0.3665 −0.1135 (3) −0.1450 −0.0206 (3) 0.0125 0.0249 (3) 0.0898 0.2414 (2) 0.2015 0.3508 (3) 0.3835 0.4107 (2) 0.4844 0.3610 (2) 0.2496 (2) 0.1926 (2)

0.7348 (4) 0.6893 0.8428 (4) 0.8697 0.9083 (4) 0.9813 0.8659 (3) 0.7599 (3) 0.7141 (3) 0.7655 (3) 0.8717 (4) 0.9084 0.9202 (4) 0.9913 0.7049 (4) 0.7326 0.6073 (4) 0.5681 0.5665 (4) 0.5002 0.7559 (3) 0.7727 0.8207 (4) 0.8794 0.7989 (4) 0.8429 0.7094 (3) 0.6489 (3) 0.5594 (3)

0.90577 (8) 0.9281 0.90396 (11) 0.9248 0.87138 (12) 0.8700 0.84020 (9) 0.84444 (7) 0.81373 (6) 0.77846 (8) 0.77519 (11) 0.7523 0.80387 (12) 0.8005 0.74997 (7) 0.7262 0.75614 (7) 0.7370 0.79152 (7) 0.7958 0.85428 (7) 0.8309 0.86379 (8) 0.8469 0.89785 (8) 0.9044 0.92323 (7) 0.91134 (6) 0.93577 (6)

0.0499 (7) 0.060* 0.0669 (10) 0.080* 0.0699 (10) 0.084* 0.0555 (8) 0.0399 (6) 0.0393 (6) 0.0540 (8) 0.0749 (11) 0.090* 0.0740 (11) 0.089* 0.0652 (10) 0.078* 0.0646 (9) 0.078* 0.0566 (8) 0.068* 0.0474 (6) 0.057* 0.0552 (7) 0.066* 0.0542 (7) 0.065* 0.0418 (6) 0.0348 (5) 0.0331 (5)

Acta Cryst. (2015). C71

sup-2

supporting information C19 C20 H20 C21 H21 C22 H22 C23 H23 C24 H24 C25 C26 C27 H27 C28 C29 H29 C30 H30 C31 C32 C33 C34 H34 C35 C36 H36 C37 H37 C38 Cu1 N1 N2 N3 N4 N5 H5A H5B N6 H6A H6B O1 O2 O3 O4 O5 H5

0.2489 (2) 0.3622 (2) 0.3998 0.4151 (2) 0.4892 0.1885 (2) 0.2219 0.0813 (2) 0.0417 0.0306 (2) −0.0429 0.21565 (19) 0.28963 (18) 0.24465 (19) 0.2918 0.13309 (19) 0.0589 (2) −0.0173 0.1013 (2) 0.0530 0.2570 (2) 0.6343 (2) 0.71962 (19) 0.72128 (19) 0.7764 0.64237 (19) 0.5600 (2) 0.5078 0.5565 (2) 0.5011 0.6296 (2) 0.03046 (3) −0.11532 (16) −0.02020 (19) 0.19067 (17) 0.08425 (17) 0.40098 (17) 0.4423 0.4306 0.8009 (2) 0.8521 0.8013 −0.00372 (14) 0.17531 (16) 0.01945 (19) 0.35162 (15) 0.18111 (15) 0.2119

Acta Cryst. (2015). C71

0.5292 (3) 0.5941 (4) 0.5772 0.6785 (4) 0.7184 0.4350 (3) 0.4123 0.3776 (3) 0.3139 0.4147 (3) 0.3748 0.0117 (3) 0.0983 (3) 0.1496 (3) 0.2070 0.1165 (3) 0.0316 (3) 0.0106 −0.0202 (3) −0.0779 −0.0429 (3) 0.4615 (3) 0.3591 (3) 0.3344 (3) 0.2661 0.4101 (3) 0.5137 (3) 0.5659 0.5386 (3) 0.6080 0.4897 (3) 0.56098 (4) 0.6948 (3) 0.6180 (3) 0.6703 (2) 0.5048 (3) 0.1339 (3) 0.1866 0.1039 0.2846 (3) 0.2238 0.2983 0.3183 (2) 0.2594 (3) 0.0602 (2) −0.0101 (3) −0.1323 (3) −0.1693

0.97122 (6) 0.98251 (7) 1.0062 0.95976 (8) 0.9679 0.99327 (7) 1.0171 0.97963 (7) 0.9940 0.94395 (6) 0.9349 0.96723 (6) 0.94803 (6) 0.91263 (6) 0.8995 0.89722 (6) 0.91592 (6) 0.9053 0.95046 (6) 0.9631 1.00470 (6) 0.78522 (6) 0.80419 (6) 0.84147 (6) 0.8544 0.85886 (6) 0.84060 (6) 0.8528 0.80387 (7) 0.7914 0.74595 (7) 0.871179 (7) 0.87692 (5) 0.81970 (5) 0.87720 (5) 0.92277 (5) 0.96161 (6) 0.9487 0.9832 0.78815 (6) 0.8008 0.7654 0.85908 (4) 0.83907 (5) 0.83264 (5) 1.02202 (5) 1.01846 (5) 1.0381

0.0380 (6) 0.0482 (7) 0.058* 0.0516 (7) 0.062* 0.0453 (6) 0.054* 0.0452 (6) 0.054* 0.0410 (6) 0.049* 0.0306 (5) 0.0312 (5) 0.0327 (5) 0.039* 0.0320 (5) 0.0386 (6) 0.046* 0.0372 (5) 0.045* 0.0362 (5) 0.0342 (5) 0.0349 (5) 0.0358 (5) 0.043* 0.0319 (5) 0.0404 (6) 0.048* 0.0403 (6) 0.048* 0.0420 (6) 0.03951 (10) 0.0385 (5) 0.0412 (5) 0.0377 (5) 0.0359 (4) 0.0492 (6) 0.059* 0.059* 0.0600 (7) 0.072* 0.072* 0.0420 (4) 0.0557 (5) 0.0588 (5) 0.0514 (5) 0.0514 (5) 0.077*

sup-3

supporting information O6 O7 O8 O9 O10 H10A O1W H1WB H1WA S1 S2

0.53864 (16) 0.6247 (2) 0.74524 (15) 0.6873 (2) 0.55839 (17) 0.5689 0.40628 (18) 0.4440 0.3330 0.07821 (5) 0.63718 (5)

0.2549 (3) 0.5106 (3) 0.2787 (3) 0.4156 (3) 0.6071 (3) 0.6288 0.1781 (3) 0.2188 0.2050 0.19073 (8) 0.36177 (8)

0.90272 (5) 0.92356 (5) 0.91882 (5) 0.72731 (5) 0.73244 (5) 0.7119 0.83336 (5) 0.8516 0.8377 0.853224 (15) 0.905053 (15)

0.0599 (6) 0.0691 (6) 0.0567 (5) 0.0688 (6) 0.0531 (5) 0.080* 0.0614 (6) 0.090 (13)* 0.098 (13)* 0.03664 (15) 0.03748 (15)

Atomic displacement parameters (Å2)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33

U11

U22

U33

U12

U13

U23

0.0459 (15) 0.0568 (19) 0.0443 (17) 0.0359 (14) 0.0348 (12) 0.0468 (14) 0.0608 (17) 0.066 (2) 0.0441 (17) 0.105 (3) 0.112 (3) 0.091 (2) 0.0567 (16) 0.0612 (18) 0.0455 (15) 0.0391 (13) 0.0389 (12) 0.0383 (12) 0.0448 (13) 0.0435 (14) 0.0382 (14) 0.0595 (17) 0.0583 (16) 0.0445 (14) 0.0341 (11) 0.0291 (11) 0.0330 (12) 0.0362 (12) 0.0329 (12) 0.0368 (12) 0.0378 (13) 0.0388 (12) 0.0331 (12)

0.0545 (17) 0.057 (2) 0.0437 (18) 0.0391 (15) 0.0313 (13) 0.0309 (12) 0.0405 (15) 0.065 (2) 0.0499 (19) 0.0579 (19) 0.0566 (19) 0.0520 (17) 0.0494 (16) 0.0520 (17) 0.0560 (17) 0.0437 (14) 0.0345 (13) 0.0341 (12) 0.0414 (14) 0.0635 (18) 0.0652 (19) 0.0519 (16) 0.0501 (15) 0.0481 (15) 0.0342 (12) 0.0383 (13) 0.0405 (13) 0.0340 (12) 0.0451 (14) 0.0409 (14) 0.0443 (14) 0.0371 (13) 0.0409 (13)

0.0518 (16) 0.096 (3) 0.126 (3) 0.090 (2) 0.0503 (15) 0.0354 (13) 0.0519 (17) 0.080 (3) 0.118 (3) 0.0252 (14) 0.0251 (14) 0.0293 (13) 0.0400 (14) 0.0601 (19) 0.066 (2) 0.0443 (14) 0.0321 (12) 0.0267 (11) 0.0273 (12) 0.0343 (14) 0.0493 (16) 0.0240 (12) 0.0302 (13) 0.0311 (12) 0.0229 (11) 0.0258 (11) 0.0253 (11) 0.0245 (11) 0.0347 (13) 0.0331 (12) 0.0271 (11) 0.0252 (11) 0.0303 (12)

−0.0118 (13) −0.0108 (16) 0.0001 (14) −0.0042 (12) −0.0074 (10) −0.0101 (11) −0.0184 (13) −0.0143 (18) 0.0014 (14) −0.0314 (19) −0.008 (2) 0.0077 (16) 0.0072 (13) −0.0001 (14) −0.0050 (13) 0.0012 (11) 0.0055 (10) 0.0047 (10) 0.0093 (11) 0.0085 (13) −0.0006 (13) 0.0101 (13) 0.0011 (13) −0.0046 (12) 0.0068 (10) 0.0044 (9) 0.0022 (10) 0.0028 (10) −0.0053 (11) −0.0044 (11) 0.0058 (11) −0.0092 (10) −0.0056 (10)

0.0156 (12) 0.0413 (19) 0.026 (2) 0.0073 (14) −0.0024 (11) −0.0066 (11) −0.0154 (14) −0.0271 (19) −0.0156 (19) −0.0090 (15) 0.0110 (16) 0.0161 (14) 0.0195 (12) 0.0321 (15) 0.0225 (14) 0.0120 (11) 0.0095 (10) 0.0052 (9) 0.0047 (10) −0.0026 (11) 0.0018 (12) 0.0055 (11) 0.0159 (12) 0.0087 (10) 0.0030 (9) 0.0035 (9) 0.0073 (9) 0.0016 (9) −0.0034 (10) 0.0037 (10) 0.0068 (10) 0.0015 (9) 0.0045 (9)

−0.0132 (13) −0.0264 (19) −0.001 (2) 0.0046 (15) −0.0001 (11) 0.0052 (10) 0.0183 (13) 0.032 (2) 0.029 (2) 0.0113 (13) 0.0040 (13) 0.0033 (12) 0.0072 (12) 0.0072 (14) −0.0082 (15) −0.0084 (12) −0.0038 (10) −0.0040 (10) −0.0045 (10) −0.0078 (13) −0.0166 (14) 0.0013 (11) 0.0032 (11) −0.0020 (11) 0.0038 (9) 0.0017 (9) 0.0053 (10) 0.0025 (9) 0.0058 (11) 0.0086 (10) 0.0050 (10) 0.0025 (10) 0.0017 (10)

Acta Cryst. (2015). C71

sup-4

supporting information C34 C35 C36 C37 C38 Cu1 N1 N2 N3 N4 N5 N6 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O1W S1 S2

0.0324 (12) 0.0349 (12) 0.0477 (14) 0.0445 (14) 0.0437 (14) 0.04311 (18) 0.0362 (10) 0.0578 (13) 0.0440 (11) 0.0385 (11) 0.0314 (11) 0.0578 (14) 0.0413 (9) 0.0495 (11) 0.0849 (14) 0.0422 (10) 0.0475 (10) 0.0489 (11) 0.1083 (18) 0.0478 (10) 0.0830 (15) 0.0569 (11) 0.0588 (12) 0.0407 (3) 0.0386 (3)

0.0444 (14) 0.0366 (13) 0.0409 (14) 0.0412 (15) 0.0515 (16) 0.0542 (2) 0.0426 (12) 0.0398 (11) 0.0402 (11) 0.0465 (12) 0.0784 (17) 0.0846 (19) 0.0471 (10) 0.0855 (15) 0.0521 (12) 0.0790 (14) 0.0744 (13) 0.0942 (16) 0.0675 (14) 0.0874 (15) 0.0944 (17) 0.0682 (13) 0.0852 (16) 0.0453 (4) 0.0510 (4)

0.0294 (12) 0.0233 (11) 0.0336 (13) 0.0333 (13) 0.0285 (12) 0.02061 (15) 0.0371 (11) 0.0246 (10) 0.0298 (10) 0.0222 (9) 0.0351 (11) 0.0399 (13) 0.0346 (9) 0.0327 (10) 0.0318 (10) 0.0297 (9) 0.0304 (9) 0.0362 (10) 0.0323 (10) 0.0348 (10) 0.0296 (10) 0.0318 (9) 0.0415 (11) 0.0215 (3) 0.0225 (3)

−0.0021 (10) −0.0082 (10) 0.0042 (11) 0.0012 (11) −0.0087 (12) 0.00513 (14) −0.0058 (9) 0.0027 (10) 0.0045 (9) −0.0008 (9) −0.0063 (11) 0.0161 (14) 0.0051 (8) 0.0056 (10) −0.0050 (10) −0.0033 (10) −0.0044 (10) −0.0267 (11) 0.0017 (13) 0.0050 (10) 0.0211 (13) 0.0012 (10) −0.0202 (11) 0.0019 (3) −0.0065 (3)

0.0023 (9) 0.0028 (9) 0.0102 (11) 0.0007 (10) −0.0002 (11) 0.00367 (12) 0.0076 (9) 0.0033 (9) 0.0092 (9) 0.0039 (8) −0.0018 (9) 0.0147 (11) −0.0024 (7) 0.0091 (8) −0.0119 (9) −0.0033 (8) 0.0010 (8) 0.0061 (8) 0.0145 (11) 0.0069 (8) 0.0112 (10) 0.0007 (8) 0.0129 (9) −0.0015 (2) 0.0043 (2)

0.0100 (10) 0.0037 (9) 0.0032 (11) 0.0073 (11) 0.0037 (12) 0.00409 (13) −0.0072 (9) 0.0031 (9) 0.0033 (9) −0.0001 (9) 0.0149 (11) 0.0110 (13) 0.0062 (8) 0.0190 (10) −0.0044 (9) 0.0132 (9) 0.0218 (9) 0.0155 (10) −0.0055 (10) 0.0269 (10) 0.0043 (10) 0.0163 (9) −0.0246 (11) 0.0044 (2) 0.0059 (3)

Geometric parameters (Å, º) C1—N1 C1—C2 C1—H1 C2—C3 C2—H2 C3—C4 C3—H3 C4—C5 C4—C9 C5—N1 C5—C6 C6—N2 C6—C7 C7—C10 C7—C8 C8—C9 C8—H8 C9—H9 C10—C11 C10—H10

Acta Cryst. (2015). C71

1.324 (3) 1.399 (4) 0.9300 1.362 (5) 0.9300 1.390 (5) 0.9300 1.398 (4) 1.446 (5) 1.361 (3) 1.423 (4) 1.346 (3) 1.414 (3) 1.396 (5) 1.422 (5) 1.327 (5) 0.9300 0.9300 1.344 (5) 0.9300

C25—C30 C25—C26 C25—C31 C26—N5 C26—C27 C27—C28 C27—H27 C28—C29 C28—S1 C29—C30 C29—H29 C30—H30 C31—O4 C31—O5 C32—C37 C32—C33 C32—C38 C33—N6 C33—C34 C34—C35

1.404 (3) 1.412 (3) 1.474 (3) 1.350 (3) 1.405 (3) 1.364 (3) 0.9300 1.395 (3) 1.772 (2) 1.371 (3) 0.9300 0.9300 1.216 (3) 1.327 (3) 1.394 (3) 1.407 (3) 1.479 (3) 1.357 (3) 1.407 (3) 1.370 (3)

sup-5

supporting information C11—C12 C11—H11 C12—N2 C12—H12 C13—N3 C13—C14 C13—H13 C14—C15 C14—H14 C15—C16 C15—H15 C16—C17 C16—C21 C17—N3 C17—C18 C18—N4 C18—C19 C19—C22 C19—C20 C20—C21 C20—H20 C21—H21 C22—C23 C22—H22 C23—C24 C23—H23 C24—N4 C24—H24

1.382 (4) 0.9300 1.327 (3) 0.9300 1.327 (3) 1.380 (4) 0.9300 1.358 (4) 0.9300 1.406 (4) 0.9300 1.399 (3) 1.428 (4) 1.356 (3) 1.427 (3) 1.357 (3) 1.399 (3) 1.409 (4) 1.428 (4) 1.333 (4) 0.9300 0.9300 1.359 (4) 0.9300 1.399 (3) 0.9300 1.323 (3) 0.9300

C34—H34 C35—C36 C35—S2 C36—C37 C36—H36 C37—H37 C38—O9 C38—O10 Cu1—N2 Cu1—N4 Cu1—N3 Cu1—N1 Cu1—O1 N5—H5A N5—H5B N6—H6A N6—H6B O1—S1 O2—S1 O3—S1 O5—H5 O6—S2 O7—S2 O8—S2 O10—H10A O1W—H1WB O1W—H1WA

0.9300 1.382 (3) 1.784 (2) 1.383 (3) 0.9300 0.9300 1.217 (3) 1.323 (3) 1.9731 (19) 1.9806 (18) 2.062 (2) 2.077 (2) 2.0824 (18) 0.8600 0.8600 0.8600 0.8600 1.4686 (18) 1.4501 (19) 1.4332 (19) 0.8200 1.4450 (19) 1.432 (2) 1.4558 (19) 0.8200 0.8209 0.9278

N1—C1—C2 N1—C1—H1 C2—C1—H1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3 C4—C3—H3 C3—C4—C5 C3—C4—C9 C5—C4—C9 N1—C5—C4 N1—C5—C6 C4—C5—C6 N2—C6—C7 N2—C6—C5 C7—C6—C5 C10—C7—C6

122.4 (3) 118.8 118.8 119.4 (3) 120.3 120.3 120.1 (3) 120.0 120.0 117.0 (3) 125.4 (3) 117.6 (3) 123.4 (3) 116.8 (2) 119.9 (3) 121.9 (3) 117.2 (2) 120.9 (3) 116.3 (3)

C28—C27—H27 C26—C27—H27 C27—C28—C29 C27—C28—S1 C29—C28—S1 C30—C29—C28 C30—C29—H29 C28—C29—H29 C29—C30—C25 C29—C30—H30 C25—C30—H30 O4—C31—O5 O4—C31—C25 O5—C31—C25 C37—C32—C33 C37—C32—C38 C33—C32—C38 N6—C33—C34 N6—C33—C32

119.4 119.4 121.6 (2) 119.56 (17) 118.81 (17) 118.2 (2) 120.9 120.9 121.8 (2) 119.1 119.1 121.9 (2) 124.1 (2) 114.0 (2) 119.5 (2) 120.5 (2) 120.0 (2) 118.7 (2) 122.9 (2)

Acta Cryst. (2015). C71

sup-6

supporting information C10—C7—C8 C6—C7—C8 C9—C8—C7 C9—C8—H8 C7—C8—H8 C8—C9—C4 C8—C9—H9 C4—C9—H9 C11—C10—C7 C11—C10—H10 C7—C10—H10 C10—C11—C12 C10—C11—H11 C12—C11—H11 N2—C12—C11 N2—C12—H12 C11—C12—H12 N3—C13—C14 N3—C13—H13 C14—C13—H13 C15—C14—C13 C15—C14—H14 C13—C14—H14 C14—C15—C16 C14—C15—H15 C16—C15—H15 C17—C16—C15 C17—C16—C21 C15—C16—C21 N3—C17—C16 N3—C17—C18 C16—C17—C18 N4—C18—C19 N4—C18—C17 C19—C18—C17 C18—C19—C22 C18—C19—C20 C22—C19—C20 C21—C20—C19 C21—C20—H20 C19—C20—H20 C20—C21—C16 C20—C21—H21 C16—C21—H21 C23—C22—C19 C23—C22—H22 C19—C22—H22 C22—C23—C24

Acta Cryst. (2015). C71

126.2 (3) 117.5 (3) 121.9 (3) 119.1 119.1 122.1 (3) 118.9 118.9 121.4 (3) 119.3 119.3 118.7 (3) 120.6 120.6 122.8 (3) 118.6 118.6 122.7 (3) 118.7 118.7 120.0 (3) 120.0 120.0 119.7 (3) 120.1 120.1 116.5 (2) 118.6 (2) 124.9 (3) 123.4 (2) 116.9 (2) 119.7 (2) 122.8 (2) 117.0 (2) 120.2 (2) 116.8 (2) 118.5 (2) 124.7 (2) 121.2 (2) 119.4 119.4 121.7 (3) 119.1 119.1 119.9 (2) 120.1 120.1 119.8 (2)

C34—C33—C32 C35—C34—C33 C35—C34—H34 C33—C34—H34 C34—C35—C36 C34—C35—S2 C36—C35—S2 C35—C36—C37 C35—C36—H36 C37—C36—H36 C36—C37—C32 C36—C37—H37 C32—C37—H37 O9—C38—O10 O9—C38—C32 O10—C38—C32 N2—Cu1—N4 N2—Cu1—N3 N4—Cu1—N3 N2—Cu1—N1 N4—Cu1—N1 N2—Cu1—O1 N4—Cu1—O1 N3—Cu1—O1 N1—Cu1—O1 N3—Cu1—N1 C1—N1—C5 C1—N1—Cu1 C5—N1—Cu1 C12—N2—C6 C12—N2—Cu1 C6—N2—Cu1 C13—N3—C17 C13—N3—Cu1 C17—N3—Cu1 C24—N4—C18 C24—N4—Cu1 C18—N4—Cu1 C26—N5—H5A C26—N5—H5B H5A—N5—H5B C33—N6—H6A C33—N6—H6B H6A—N6—H6B S1—O1—Cu1 C31—O5—H5 C38—O10—H10A H1WB—O1W—H1WA

118.4 (2) 120.5 (2) 119.7 119.7 121.4 (2) 119.63 (17) 118.80 (18) 119.0 (2) 120.5 120.5 121.1 (2) 119.4 119.4 121.8 (2) 124.0 (2) 114.2 (2) 178.95 (9) 96.81 (9) 82.18 (8) 81.80 (8) 98.94 (8) 90.22 (8) 90.15 (8) 125.80 (7) 113.92 (7) 120.28 (8) 117.7 (2) 132.00 (19) 110.07 (16) 118.9 (2) 127.17 (19) 113.89 (16) 117.8 (2) 131.52 (19) 110.68 (15) 119.0 (2) 127.68 (17) 113.20 (15) 120.0 120.0 120.0 120.0 120.0 120.0 128.28 (10) 109.5 109.5 97.9

sup-7

supporting information C22—C23—H23 C24—C23—H23 N4—C24—C23 N4—C24—H24 C23—C24—H24 C30—C25—C26 C30—C25—C31 C26—C25—C31 N5—C26—C27 N5—C26—C25 C27—C26—C25 C28—C27—C26

120.1 120.1 121.8 (2) 119.1 119.1 119.3 (2) 120.1 (2) 120.6 (2) 118.2 (2) 123.9 (2) 117.9 (2) 121.1 (2)

O3—S1—O2 O3—S1—O1 O2—S1—O1 O3—S1—C28 O2—S1—C28 O1—S1—C28 O7—S2—O6 O7—S2—O8 O6—S2—O8 O7—S2—C35 O6—S2—C35 O8—S2—C35

115.74 (13) 110.84 (12) 110.26 (12) 107.61 (11) 106.97 (11) 104.71 (10) 114.16 (14) 112.90 (13) 111.74 (13) 107.36 (12) 103.72 (10) 106.09 (11)

N1—C1—C2—C3 C1—C2—C3—C4 C2—C3—C4—C5 C2—C3—C4—C9 C3—C4—C5—N1 C9—C4—C5—N1 C3—C4—C5—C6 C9—C4—C5—C6 N1—C5—C6—N2 C4—C5—C6—N2 N1—C5—C6—C7 C4—C5—C6—C7 N2—C6—C7—C10 C5—C6—C7—C10 N2—C6—C7—C8 C5—C6—C7—C8 C10—C7—C8—C9 C6—C7—C8—C9 C7—C8—C9—C4 C3—C4—C9—C8 C5—C4—C9—C8 C6—C7—C10—C11 C8—C7—C10—C11 C7—C10—C11—C12 C10—C11—C12—N2 N3—C13—C14—C15 C13—C14—C15—C16 C14—C15—C16—C17 C14—C15—C16—C21 C15—C16—C17—N3 C21—C16—C17—N3 C15—C16—C17—C18 C21—C16—C17—C18 N3—C17—C18—N4 C16—C17—C18—N4

1.0 (4) 0.9 (5) −2.2 (4) 176.7 (3) 1.8 (4) −177.2 (2) −178.7 (2) 2.3 (4) −3.6 (3) 176.9 (2) 175.1 (2) −4.4 (4) 2.9 (4) −175.7 (2) −177.7 (2) 3.6 (4) 178.4 (3) −0.9 (5) −1.2 (5) −178.4 (3) 0.4 (5) −2.1 (4) 178.6 (3) 0.3 (5) 0.8 (5) −0.4 (4) 0.3 (4) −0.7 (4) −179.8 (3) 1.1 (4) −179.6 (2) −178.8 (2) 0.4 (4) −0.5 (3) 179.5 (2)

C37—C32—C38—O9 C33—C32—C38—O9 C37—C32—C38—O10 C33—C32—C38—O10 C2—C1—N1—C5 C2—C1—N1—Cu1 C4—C5—N1—C1 C6—C5—N1—C1 C4—C5—N1—Cu1 C6—C5—N1—Cu1 N2—Cu1—N1—C1 N4—Cu1—N1—C1 N3—Cu1—N1—C1 O1—Cu1—N1—C1 N2—Cu1—N1—C5 N4—Cu1—N1—C5 N3—Cu1—N1—C5 O1—Cu1—N1—C5 C11—C12—N2—C6 C11—C12—N2—Cu1 C7—C6—N2—C12 C5—C6—N2—C12 C7—C6—N2—Cu1 C5—C6—N2—Cu1 N4—Cu1—N2—C12 N3—Cu1—N2—C12 N1—Cu1—N2—C12 O1—Cu1—N2—C12 N4—Cu1—N2—C6 N3—Cu1—N2—C6 N1—Cu1—N2—C6 O1—Cu1—N2—C6 C14—C13—N3—C17 C14—C13—N3—Cu1 C16—C17—N3—C13

−172.9 (3) 8.6 (4) 8.8 (3) −169.7 (2) −1.5 (4) 172.4 (2) 0.1 (4) −179.5 (2) −175.1 (2) 5.4 (3) −178.5 (2) 0.7 (2) −85.4 (2) 94.9 (2) −4.30 (16) 174.95 (16) 88.83 (16) −90.88 (16) 0.0 (4) 176.7 (2) −1.9 (4) 176.8 (2) −179.06 (19) −0.4 (3) 51 (5) 66.0 (3) −174.3 (3) −60.2 (2) −133 (5) −117.17 (17) 2.55 (17) 116.70 (17) 0.9 (4) 179.6 (2) −1.2 (3)

Acta Cryst. (2015). C71

sup-8

supporting information N3—C17—C18—C19 C16—C17—C18—C19 N4—C18—C19—C22 C17—C18—C19—C22 N4—C18—C19—C20 C17—C18—C19—C20 C18—C19—C20—C21 C22—C19—C20—C21 C19—C20—C21—C16 C17—C16—C21—C20 C15—C16—C21—C20 C18—C19—C22—C23 C20—C19—C22—C23 C19—C22—C23—C24 C22—C23—C24—N4 C30—C25—C26—N5 C31—C25—C26—N5 C30—C25—C26—C27 C31—C25—C26—C27 N5—C26—C27—C28 C25—C26—C27—C28 C26—C27—C28—C29 C26—C27—C28—S1 C27—C28—C29—C30 S1—C28—C29—C30 C28—C29—C30—C25 C26—C25—C30—C29 C31—C25—C30—C29 C30—C25—C31—O4 C26—C25—C31—O4 C30—C25—C31—O5 C26—C25—C31—O5 C37—C32—C33—N6 C38—C32—C33—N6 C37—C32—C33—C34 C38—C32—C33—C34 N6—C33—C34—C35 C32—C33—C34—C35 C33—C34—C35—C36 C33—C34—C35—S2 C34—C35—C36—C37 S2—C35—C36—C37 C35—C36—C37—C32 C33—C32—C37—C36 C38—C32—C37—C36

Acta Cryst. (2015). C71

178.6 (2) −1.4 (3) 1.2 (3) −177.8 (2) −179.0 (2) 2.0 (3) −1.6 (4) 178.1 (3) 0.6 (4) 0.0 (4) 179.2 (3) 0.5 (4) −179.3 (2) −1.1 (4) 0.1 (4) −179.5 (2) 1.5 (4) 0.1 (3) −178.9 (2) 179.5 (2) −0.1 (3) 0.4 (4) 177.37 (18) −0.7 (4) −177.68 (19) 0.7 (4) −0.5 (4) 178.6 (2) −174.4 (2) 4.6 (4) 5.4 (3) −175.5 (2) −177.5 (2) 1.0 (4) 1.8 (3) −179.7 (2) 178.5 (2) −0.8 (4) −0.7 (4) 173.92 (18) 1.2 (4) −173.51 (19) −0.1 (4) −1.3 (4) −179.8 (2)

C18—C17—N3—C13 C16—C17—N3—Cu1 C18—C17—N3—Cu1 N2—Cu1—N3—C13 N4—Cu1—N3—C13 N1—Cu1—N3—C13 O1—Cu1—N3—C13 N2—Cu1—N3—C17 N4—Cu1—N3—C17 N1—Cu1—N3—C17 O1—Cu1—N3—C17 C23—C24—N4—C18 C23—C24—N4—Cu1 C19—C18—N4—C24 C17—C18—N4—C24 C19—C18—N4—Cu1 C17—C18—N4—Cu1 N2—Cu1—N4—C24 N3—Cu1—N4—C24 N1—Cu1—N4—C24 O1—Cu1—N4—C24 N2—Cu1—N4—C18 N3—Cu1—N4—C18 N1—Cu1—N4—C18 O1—Cu1—N4—C18 N2—Cu1—O1—S1 N4—Cu1—O1—S1 N3—Cu1—O1—S1 N1—Cu1—O1—S1 Cu1—O1—S1—O3 Cu1—O1—S1—O2 Cu1—O1—S1—C28 C27—C28—S1—O3 C29—C28—S1—O3 C27—C28—S1—O2 C29—C28—S1—O2 C27—C28—S1—O1 C29—C28—S1—O1 C34—C35—S2—O7 C36—C35—S2—O7 C34—C35—S2—O6 C36—C35—S2—O6 C34—C35—S2—O8 C36—C35—S2—O8

178.7 (2) 179.77 (19) −0.2 (3) 2.1 (2) −178.2 (2) −82.4 (2) 97.3 (2) −179.15 (16) 0.57 (16) 96.40 (17) −83.93 (17) 1.6 (4) 176.73 (19) −2.3 (3) 176.7 (2) −178.07 (18) 0.9 (3) −161 (5) −176.2 (2) 64.2 (2) −50.0 (2) 15 (5) −0.82 (16) −120.40 (16) 125.34 (16) 98.77 (13) −80.25 (13) 0.20 (17) 179.89 (12) −158.05 (12) −28.56 (16) 86.18 (14) 133.2 (2) −49.7 (2) 8.2 (2) −174.7 (2) −108.8 (2) 68.3 (2) 137.1 (2) −48.1 (2) −101.7 (2) 73.1 (2) 16.2 (2) −169.1 (2)

sup-9

supporting information Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

N5—H5A···O6 N5—H5B···O4 N6—H6A···O1i N6—H6A···O3i N6—H6B···O9 O5—H5···O8ii O10—H10A···O1Wiii O1W—H1WB···O6 O1W—H1WA···O2

0.86 0.86 0.86 0.86 0.86 0.82 0.82 0.82 0.93

2.28 2.08 2.64 2.51 2.03 1.84 1.81 2.06 1.91

3.109 (3) 2.703 (3) 3.207 (3) 3.365 (3) 2.664 (3) 2.651 (2) 2.631 (3) 2.858 (3) 2.832 (3)

162 129 125 173 130 168 179 164 171

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+2; (iii) −x+1, y+1/2, −z+3/2.

(zl10) catena-Poly[[diaquacopper(II)]-µ-3-amino-4-carboxylatobenzene-1-sulfonato-κ2O4:O4′] Crystal data [Cu(C7H6N2O5S)(H2O)2] Mr = 314.77 Monoclinic, P21/c Hall symbol: -P2ybc a = 8.4858 (9) Å b = 9.9337 (11) Å c = 14.5512 (13) Å β = 120.445 (5)° V = 1057.47 (19) Å3 Z=4

F(000) = 636 Dx = 1.977 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 9991 reflections θ = 2.6–27.6° µ = 2.29 mm−1 T = 296 K Massive, green 0.3 × 0.28 × 0.20 mm

Data collection Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 2003) Tmin = 0.509, Tmax = 0.633

15782 measured reflections 2426 independent reflections 2186 reflections with I > 2σ(I) Rint = 0.027 θmax = 27.6°, θmin = 2.6° h = −11→10 k = −12→10 l = −18→18

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.024 wR(F2) = 0.065 S = 1.07 2426 reflections 154 parameters 7 restraints Primary atom site location: structure-invariant direct methods

Acta Cryst. (2015). C71

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0322P)2 + 0.8556P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.43 e Å−3 Δρmin = −0.40 e Å−3

sup-10

supporting information Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

O1W H1WA H1WB C1 C2 C3 H3 C4 C5 H5 C6 H6 C7 Cu1 N1 H1A H1B O1 O2 O3 O4 O5 O2W H2WB H2WA S1

x

y

z

Uiso*/Ueq

1.0617 (6) 1.0097 1.1792 0.8046 (7) 0.7667 (7) 0.6913 (7) 0.6647 0.6561 (7) 0.6891 (10) 0.6628 0.7609 (9) 0.7804 0.8958 (7) 1.06908 (9) 0.8075 (6) 0.7357 0.7863 1.0102 (5) 0.8535 (6) 0.6608 (6) 0.3681 (6) 0.5817 (6) 1.3303 (5) 1.3849 1.3332 0.55818 (18)

0.4088 (5) 0.3220 0.3901 0.3927 (5) 0.5176 (5) 0.6207 (5) 0.7035 0.5987 (5) 0.4745 (6) 0.4607 0.3717 (6) 0.2877 0.2816 (5) 0.49189 (6) 0.5373 (4) 0.4841 0.6235 0.3090 (4) 0.1641 (4) 0.7278 (4) 0.6927 (5) 0.8532 (4) 0.4500 (4) 0.5234 0.4002 0.72806 (13)

0.4517 (4) 0.4247 0.5078 0.0753 (4) 0.1044 (4) 0.0300 (4) 0.0489 −0.0728 (4) −0.1033 (5) −0.1728 −0.0298 (5) −0.0504 0.1548 (4) 0.31066 (5) 0.2122 (3) 0.2256 0.2218 0.2503 (3) 0.1185 (3) −0.2253 (4) −0.2396 (4) −0.1127 (3) 0.3643 (4) 0.3687 0.3173 −0.17057 (10)

0.0366 (10) 0.055* 0.055* 0.0217 (11) 0.0185 (10) 0.0206 (10) 0.031* 0.0221 (11) 0.0320 (14) 0.048* 0.0314 (13) 0.047* 0.0195 (10) 0.0201 (2) 0.0198 (9) 0.030* 0.030* 0.0221 (8) 0.0271 (9) 0.0341 (10) 0.0388 (11) 0.0337 (10) 0.0295 (9) 0.044* 0.044* 0.0209 (3)

Atomic displacement parameters (Å2)

O1W C1 C2 C3 C4 C5

U11

U22

U33

U12

U13

U23

0.046 (3) 0.027 (3) 0.018 (2) 0.023 (3) 0.027 (3) 0.050 (4)

0.035 (2) 0.014 (2) 0.016 (2) 0.014 (2) 0.017 (2) 0.022 (3)

0.036 (2) 0.021 (3) 0.020 (2) 0.025 (3) 0.021 (3) 0.022 (3)

0.007 (2) 0.000 (2) −0.0016 (18) 0.0012 (19) 0.002 (2) 0.006 (3)

0.026 (2) 0.010 (2) 0.008 (2) 0.013 (2) 0.011 (2) 0.017 (3)

0.0070 (19) 0.0003 (19) −0.0006 (18) 0.0006 (19) 0.004 (2) 0.000 (2)

Acta Cryst. (2015). C71

sup-11

supporting information C6 C7 Cu1 N1 O1 O2 O3 O4 O5 O2W S1

0.050 (4) 0.023 (3) 0.0224 (4) 0.024 (2) 0.0244 (19) 0.035 (2) 0.049 (3) 0.028 (2) 0.046 (3) 0.027 (2) 0.0253 (7)

0.016 (2) 0.013 (2) 0.0125 (3) 0.0149 (19) 0.0138 (16) 0.0120 (17) 0.025 (2) 0.040 (3) 0.020 (2) 0.024 (2) 0.0163 (6)

0.025 (3) 0.023 (2) 0.0206 (4) 0.021 (2) 0.0209 (18) 0.0229 (19) 0.045 (3) 0.036 (2) 0.033 (2) 0.039 (2) 0.0225 (6)

0.006 (2) 0.0010 (19) −0.0004 (2) 0.0007 (17) 0.0012 (14) 0.0015 (15) 0.0028 (18) −0.0040 (19) 0.0098 (18) −0.0049 (16) 0.0019 (5)

0.016 (3) 0.012 (2) 0.0073 (3) 0.0118 (19) 0.0062 (16) 0.0063 (17) 0.036 (2) 0.007 (2) 0.019 (2) 0.0181 (19) 0.0129 (6)

−0.001 (2) 0.0006 (19) −0.0022 (2) −0.0011 (17) −0.0014 (14) 0.0006 (14) 0.0058 (18) 0.016 (2) 0.0024 (17) −0.0063 (17) 0.0042 (5)

Geometric parameters (Å, º) O1W—Cu1 O1W—H1WA O1W—H1WB C1—C6 C1—C2 C1—C7 C2—C3 C2—N1 C3—C4 C3—H3 C4—C5 C4—S1 C5—C6 C5—H5 C6—H6

2.243 (4) 0.9577 0.9324 1.395 (8) 1.399 (7) 1.498 (7) 1.389 (7) 1.439 (7) 1.386 (7) 0.9300 1.386 (8) 1.780 (5) 1.377 (8) 0.9300 0.9300

C7—O2 C7—O1 Cu1—O2i Cu1—O1 Cu1—O2W Cu1—N1 N1—H1A N1—H1B O2—Cu1ii O3—S1 O4—S1 O5—S1 O2W—H2WB O2W—H2WA

1.256 (6) 1.258 (7) 1.932 (4) 1.969 (4) 1.985 (4) 1.990 (4) 0.9000 0.9000 1.932 (4) 1.448 (4) 1.447 (5) 1.457 (4) 0.8491 0.8554

Cu1—O1W—H1WA Cu1—O1W—H1WB H1WA—O1W—H1WB C6—C1—C2 C6—C1—C7 C2—C1—C7 C3—C2—C1 C3—C2—N1 C1—C2—N1 C4—C3—C2 C4—C3—H3 C2—C3—H3 C5—C4—C3 C5—C4—S1 C3—C4—S1 C6—C5—C4 C6—C5—H5 C4—C5—H5

100.1 111.2 104.3 119.3 (5) 118.8 (5) 121.8 (5) 120.3 (5) 120.7 (4) 119.0 (5) 119.1 (5) 120.4 120.4 121.2 (5) 118.4 (4) 120.4 (4) 119.5 (5) 120.2 120.2

O2i—Cu1—O1W O2W—Cu1—O1W O2i—Cu1—O1 O1—Cu1—N1 O2W—Cu1—N1 O1—Cu1—O1W N1—Cu1—O1W O2i—Cu1—O2W C2—N1—Cu1 C2—N1—H1A Cu1—N1—H1A C2—N1—H1B Cu1—N1—H1B H1A—N1—H1B C7—O1—Cu1 C7—O2—Cu1ii Cu1—O2W—H2WB Cu1—O2W—H2WA

89.85 (17) 96.09 (18) 174.62 (16) 87.11 (17) 161.16 (18) 87.13 (17) 101.78 (18) 88.03 (17) 108.6 (3) 110.0 110.0 110.0 110.0 108.4 124.9 (3) 130.7 (4) 107.9 106.6

Acta Cryst. (2015). C71

sup-12

supporting information C5—C6—C1 C5—C6—H6 C1—C6—H6 O2—C7—O1 O2—C7—C1 O1—C7—C1 O1—Cu1—O2W O2i—Cu1—N1

120.5 (5) 119.7 119.7 124.1 (5) 115.8 (5) 120.1 (4) 87.87 (17) 97.87 (17)

H2WB—O2W—H2WA O4—S1—O3 O4—S1—O5 O3—S1—O5 O4—S1—C4 O3—S1—C4 O5—S1—C4

108.7 112.8 (3) 112.7 (3) 112.0 (3) 106.5 (3) 105.7 (3) 106.4 (2)

C6—C1—C2—C3 C7—C1—C2—C3 C6—C1—C2—N1 C7—C1—C2—N1 C1—C2—C3—C4 N1—C2—C3—C4 C2—C3—C4—C5 C2—C3—C4—S1 C3—C4—C5—C6 S1—C4—C5—C6 C4—C5—C6—C1 C2—C1—C6—C5 C7—C1—C6—C5 C6—C1—C7—O2 C2—C1—C7—O2 C6—C1—C7—O1 C2—C1—C7—O1 C3—C2—N1—Cu1 C1—C2—N1—Cu1

−1.9 (8) 176.4 (5) 178.3 (5) −3.4 (8) −0.7 (8) 179.1 (5) 2.3 (9) 179.6 (4) −1.1 (10) −178.5 (5) −1.5 (10) 3.0 (9) −175.3 (6) −32.0 (8) 149.7 (5) 146.3 (6) −32.0 (8) −125.3 (4) 54.5 (5)

O2i—Cu1—N1—C2 O1—Cu1—N1—C2 O2W—Cu1—N1—C2 O1W—Cu1—N1—C2 O2—C7—O1—Cu1 C1—C7—O1—Cu1 O2i—Cu1—O1—C7 O2W—Cu1—O1—C7 N1—Cu1—O1—C7 O1W—Cu1—O1—C7 O1—C7—O2—Cu1ii C1—C7—O2—Cu1ii C5—C4—S1—O4 C3—C4—S1—O4 C5—C4—S1—O3 C3—C4—S1—O3 C5—C4—S1—O5 C3—C4—S1—O5

121.3 (3) −60.8 (3) 14.0 (7) −147.2 (3) −176.6 (4) 5.3 (7) −167.3 (17) −127.0 (4) 34.9 (4) 136.8 (4) 3.0 (9) −178.8 (4) 73.5 (6) −103.9 (5) −46.7 (6) 135.9 (5) −166.0 (5) 16.6 (5)

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, º) D—H···A ii

O1W—H1WB···O5 N1—H1A···O4iii N1—H1B···O3iv O2W—H2WB···O5v O2W—H2WA···O3vi

D—H

H···A

D···A

D—H···A

0.93 0.90 0.90 0.85 0.86

1.86 2.02 2.18 1.98 1.86

2.786 (7) 2.864 (6) 2.995 (6) 2.786 (6) 2.715 (6)

176 156 151 159 172

Symmetry codes: (ii) −x+2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z; (iv) x, −y+3/2, z+1/2; (v) x+1, −y+3/2, z+1/2; (vi) −x+2, −y+1, −z.

Acta Cryst. (2015). C71

sup-13

Synthesis, structure and characterization of two copper(II) supramolecular coordination polymers based on a multifunctional ligand 2-amino-4-sulfobenzoic acid.

Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties. The re...
2MB Sizes 0 Downloads 14 Views