Thermal, spectroscopic and laser characterization of monoclinic vanadate Nd:LaVO4 crystal Shangqian Sun,1,2 Haohai Yu,1,* Yicheng Wang,1 Huaijin Zhang,1 and Jiyang Wang1 1

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China 2 School of Physics, Shandong University, Jinan 250100, China *[email protected]

Abstract: The monoclinic vanadate Nd:LaVO4 crystal was characterized, including the first investigation of thermal properties and anisotropic laser performance to our knowledge. The thermal properties behave anisotropically with the highest thermal conductivity of 3.27 W/m/K along the c* direction. With a laser diode as the pump source, the efficient continuous-wave (cw) and passively Q-switched monoclinic Nd:LaVO4 crystal lasers were realized, which resulted in the nearly isotropic maximum output power and laser wavelength. The maximum cw output power is 3.56 W with a slope efficiency of 41.4%, and the passively Q-switched pulse width is 10.9 ns with pulse energy of 38.3 μJ. Based on the laser results, the thermal shock parameter anisotropy is calculated to be 1:1.28. The results show that, in contrast to other vanadate crystals, Nd:LaVO4 is a novel laser material with low symmetry. ©2013 Optical Society of America OCIS codes: (140.3460) Lasers; (160.5690) Rare-earth-doped materials.

References and links 1. 2.

R. L. Byer, “Diode laser--pumped solid-state lasers,” Science 239(4841), 742–747 (1988). R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end pumped laser,” Appl. Phys. Lett. 51(23), 1885–1886 (1987). 3. T. Jensen, V. G. Ostroumov, J.-P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58(5), 373–379 (1994). 4. C. Maunier, J. L. Doualan, R. Moncorgé, A. Speghini, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19(8), 1794–1800 (2002). 5. J. Liu, X. Meng, Z. Shao, M. Jiang, B. Ozygus, A. Ding, and H. Weber, “Pulse energy enhancement in passive Q-switching operation with a class of Nd:GdxY1-xVO4 crystals,” Appl. Phys. Lett. 83(7), 1289–1291 (2003). 6. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, and M. H. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett. 32(15), 2152–2154 (2007). 7. K. S. Bagdasarov, L. M. Dorozhkin, L. A. Ermakova, A. M. Kevorkov, Y. I. Krasilov, N. T. Kuznetsov, I. I. Kuratev, A. V. Potemkin, L. N. Raĭskaya, P. A. Tseĭtlin, and A. V. Shestakov, “Spectroscopic and lasing properties of lanthanum neodymium magnesium hexaaluminate,” Sov. J. Quantum Electron. 13(8), 1082–1085 (1983). 8. L. M. Sun, X. Zhao, Y. L. Li, P. Li, H. G. Sun, X. F. Cheng, and W. L. Fan, “First-principles studies of electronic, optical, and vibrational properties of LaVO4 polymorph,” J. Appl. Phys. 108(9), 093519 (2010). 9. S. Yomogida, M. Higuchi, T. Ogawa, S. Wada, and J. Takahashi, “Float zone growth and anisotropic spectral properties of Nd:LaVO4 single crystals,” J. Cryst. Growth 359, 20–24 (2012). 10. L. Z. Zhang, M. W. Qiu, M. J. Song, and G. F. Wang, “1.064 μm lasing characterization of Nd3+:LaVO4 pumped with Ti:sapphire laser,” Mater. Res. Innovations 14(2), 119–121 (2010). 11. S. Q. Sun, H. J. Zhang, H. H. Yu, H. H. Xu, H. J. Cong, and J. Y. Wang, “Growth and optical properties of Nd:LaVO4 monoclinic crystal,” J. Mater. Res. 27(19), 2528–2534 (2012). 12. J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University, 1985).

#200190 - $15.00 USD Received 25 Oct 2013; revised 4 Dec 2013; accepted 4 Dec 2013; published 10 Dec 2013 (C) 2013 OSA 18 November 2013 | Vol. 21, No. 23 | DOI:10.1364/OE.21.031119 | OPTICS EXPRESS 31119

13. Y. Petit, S. Joly, P. Segonds, and B. Boulanger, “Recent advances in monoclinic crystal optics,” Laser Photon. Rev. 7(6), 920–937 (2013). 14. K. Wang, J. Zhang, J. Wang, H. Zhang, Z. Wang, W. Yu, X. Wang, Q. Lu, M. Ba, and R. I. Boughton, “Anisotropic thermal expansion of monoclinic potassium lutetium tungstate single crystals,” J. Appl. Phys. 98(4), 046101 (2005). 15. R. S. Krishnan, R. Srinivasan, and S. Devanarayanan, Thermal Expansion of Crystals (Pergamon, 1979). 16. H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34(8), 1011–1016 (1999). 17. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. F. Cheng, Z. S. Shao, M. H. Jiang, Z. C. Ling, and H. R. Xia, “Characterization of mixed Nd:LuxGd1−xVO4 laser crystals,” J. Appl. Phys. 101(11), 113109 (2007). 18. Ò. Silvestre, J. Grau, M. C. Pujol, J. Massons, M. Aguiló, F. Díaz, M. T. Borowiec, A. Szewczyk, M. U. Gutowska, M. Massot, A. Salazar, and V. Petrov, “Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host,” Opt. Express 16(7), 5022–5034 (2008). 19. C. Kittel, “Interpretation of the thermal conductivity of glasses,” Phys. Rev. 75(6), 972–974 (1949). 20. Y. Sato and T. Taira, “The study of thermo-mechanical and -optical properties of Nd:GdVO4 and Nd:YVO4, Lases and Electro-Oprics,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2007) (CLEO/QELS 2007), 1–5, 2260–2261 (2007). 21. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32(9), 1679–1684 (1961). 22. Y. F. Chen, “Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture,” IEEE J. Quantum Electron. 35(2), 234–239 (1999). 23. W. Koechner, Solid-State Laser Engineering (Springer, 1985).

1. Introduction Since the discovery of laser diode (LD) array pumped solid-state lasers [1], vanadate crystals, especially Nd:YVO4 have played an important role in realizing low and even moderate power lasers [2] due to their large emission cross section and wide spectral width. In order to improve their thermal and emission properties, Nd:GdVO4 and Nd:LuVO4 were investigated and have been seen to provide promising applications in the moderate and even high power laser regimes [3, 4]. Besides striving for improvement for applications in continuous-wave (cw) lasers, mixed Nd:GdxY1-xVO4 and Nd:GdxLu1-xVO4 (0

Thermal, spectroscopic and laser characterization of monoclinic vanadate Nd:LaVO4 crystal.

The monoclinic vanadate Nd:LaVO(4) crystal was characterized, including the first investigation of thermal properties and anisotropic laser performanc...
1MB Sizes 2 Downloads 0 Views