toxins Article

Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin Bruno Lomonte 1, *, Mahmood Sasa 1 , Paola Rey-Suárez 2 , Wendy Bryan 1 and José María Gutiérrez 1 1 2

*

Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica; [email protected] (M.S.); [email protected] (W.B.); [email protected] (J.M.G.) Programa de Ofidismo y Escorpionismo, Universidad de Antioquia, Medellín 050010, Colombia; [email protected] Correspondence: [email protected]; Tel.: +506-2511-7888

Academic Editor: Stephen P. Mackessy Received: 26 March 2016; Accepted: 2 May 2016; Published: 5 May 2016

Abstract: Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on its venom could be found in the literature. Using a ‘venomics’ approach, proteins of at least nine families were identified, with a moderate predominance of three-finger toxins (3FTx; 48.2%) over phospholipase A2 (PLA2 ; 36.5%). Comparison of this venom profile with those of other Micrurus species suggests that it may represent a more balanced, ‘intermediate’ type within the dichotomy between 3FTx- and PLA2 -predominant venoms. M. clarki venom was strongly cross-recognized and, accordingly, efficiently neutralized by an equine therapeutic antivenom against M. nigrocinctus, revealing their high antigenic similarity. Lethal activity for mice could be reproduced by a PLA2 venom fraction, but, unexpectedly, not by fractions corresponding to 3FTxs. The most abundant venom component, hereby named clarkitoxin-I, was identified as a short-chain (type I) 3FTx, devoid of lethal effect in mice, whose target remains to be defined. Its amino acid sequence of 66 residues shows high similarity with predicted sequences of venom gland transcripts described for M. fulvius, M. browni, and M. diastema. Keywords: monadal coral snake; Elapidae; neutralization

venom;

toxin;

Micrurus;

antivenom;

proteome;

1. Introduction Coral snakes (Elapidae) comprise some 71 species that are widely distributed in tropical and subtropical regions of the New World, from Southeastern USA to Central Argentina [1–3]. Envenomings by these snakes are far less frequent than those inflicted by viperids, but are of medical concern [4,5]. Micrurus clarki (Figure 1A) is an uncommon, slender to medially robust coral snake with a reported maximum length of 920 mm, although most adults average between 400 and 600 mm. This species has a tricolored pattern with narrow yellow bands bordering the black bands followed by single red bands, and a characteristic black head cap that extends over most of the snout and parietals. M. clarki has a discontinuous distribution from the Tárcoles basin in Central Pacific Costa Rica southward to the Pacific lowlands of Western Panamá, where it inhabits lowlands of the Canal Zone, to Pacific Darien, and Western Colombia. Along this distribution, M. clarki inhabits tropical wet forest, but also transitional tropical wet-tropical dry forest, where it is mostly found at low elevations, with some Toxins 2016, 8, 138; doi:10.3390/toxins8050138

www.mdpi.com/journal/toxins

Toxins 2016, 8, 138 Toxins 2016, 8, 138 

2 of 15 2 of 15 

with some exceptions reported up to 900 m above sea level [1,6,7]. Little is known about the natural  exceptions reported up to 900 m above sea level [1,6,7]. Little is known about the natural history of this history  of  this  coral  snake.  The  species  was  named  in  honor  of  H.C.  Clark,  a  medical  doctor  that  coral snake. The species was named in honor of H.C. Clark, a medical doctor that directed the Gorgas directed the Gorgas Memorial Institute in Panamá, considered a pioneer in tropical medicine [8]. It is  Memorial Institute in Panamá, considered a pioneer in tropical medicine [8]. It is considered mainly a considered  mainly  a  terrestrial  and  primarily  nocturnal  species  whose  natural  diet  is  known  to  terrestrial and primarily nocturnal species whose natural diet is known to include the marbled swamp include the marbled swamp eel Synbranchus marmoratus, and colubrid snakes [6].  eel Synbranchus marmoratus, and colubrid snakes [6].

  Figure 1. (A) Micrurus clarki and (B) separation of its venom (2 mg) by RP-HPLC, followed by (C) Figure 1. (A) Micrurus clarki and (B) separation of its venom (2 mg) by RP‐HPLC, followed by (C)  SDS-PAGE. Venom was fractionated on a C18 RP-HPLC column and eluted with an acetonitrile gradient SDS‐PAGE.  was  fractionated  on  further a  C18  RP‐HPLC  column  and  eluted  an  acetonitrile  (dashed line)Venom  at 1 mL/min. Fractions were separated by SDS-PAGE under with  reducing conditions. gradient (dashed line) at 1 mL/min. Fractions were further separated by SDS‐PAGE under reducing  Molecular weight markers (Mw) are indicated in kDa. Coomassie-stained bands were excised, in-gel conditions.  Molecular  weight  markers  (Mw)  are  indicated  in  kDa.  bands  were  digested with trypsin, and subjected to MALDI-TOF/TOF analysis forCoomassie‐stained  assignment to protein families, excised, in‐gel digested with trypsin, and subjected to MALDI‐TOF/TOF analysis for assignment to  as shown in Table 1. protein families, as shown in Table 1. 

Our search of the mainstream literature databases did not find any information on the venom of Our search of the mainstream literature databases did not find any information on the venom of  M. clarki, whose general characteristics seem to be completely unknown. As part of an ongoing effort M. clarki, whose general characteristics seem to be completely unknown. As part of an ongoing effort  to characterize the venom proteomes of all snake species from Costa Rica [9], in the present work we to characterize the venom proteomes of all snake species from Costa Rica [9], in the present work we  report the composition, toxicity, immunological cross-recognition, and neutralization of the venom of report the composition, toxicity, immunological cross‐recognition, and neutralization of the venom  M. clarki obtained from specimens collected in the Southeastern Pacific of this country. In addition, a of M. clarki obtained from specimens collected in the Southeastern Pacific of this country. In addition,  three-finger toxin from this venom was isolated and characterized. a three‐finger toxin from this venom was isolated and characterized.  2. Results and Discussion 2. Results and Discussion  2.1. Proteomic Profile of Micrurus Clarki Venom 2.1. Proteomic Profile of Micrurus Clarki Venom  The venom of M. clarki (1A) was initially separated into 33 fractions by RP-HPLC (Figure 1B), The  venom  M.  clarki  was  bands initially  separated  into  33  fractions  RP‐HPLC  which were furtherof  resolved into (1A)  42 protein after SDS-PAGE (Figure 1C). Afterby  in-gel tryptic   (Figure 1B), which were further resolved into 42 protein bands after SDS‐PAGE (Figure 1C). After in‐ digestion of these, followed by MALDI-TOF-TOF analysis, protein family assignments were obtained gel  tryptic  of  these,  to followed  by 95.9% MALDI‐TOF‐TOF  analysis,  protein The family  assignments  for 34 of thedigestion  bands, estimated represent of the total venom proteins. remaining eight were  obtained  for  34  of  the  bands,  estimated  to  represent  95.9%  of  the  total  venom  proteins.  bands for which no identifications were obtained (indicated as “unknown” in Table 1 and FigureThe  2), remaining eight bands for which no identifications were obtained (indicated as ‘‘unknown’’ in Table  altogether add to the remaining 4.1% of the venom proteins. 1 and Figure 2), altogether add to the remaining 4.1% of the venom proteins.  Although not markedly predominant, the protein family with the highest abundance in M. clarki Although not markedly predominant, the protein family with the highest abundance in M. clarki  venom corresponds to three-finger toxins (3FTx), which account for almost half of the protein content venom corresponds to three‐finger toxins (3FTx), which account for almost half of the protein content  (48.2%), followed by phospholipase A2 (PLA2 ), representing roughly one-third (36.5%). (48.2%), followed by phospholipase A2 (PLA2), representing roughly one‐third (36.5%). 

Toxins 2016, 8, 138

3 of 15

Table 1. Assignment of the RP-HPLC/SDS-PAGE separated fractions of Micrurus clarki venom to protein families by MALDI-TOF-TOF of selected peptide ions from in-gel trypsin-digested protein bands. Peak

%

Peptide Ion

Mass, kDa İ (Da)

m/z

z

MS/MS-Derived Sequence *

Conf (%)

Sc **

Protein Family; ~ Related Protein and Species *** PNP; adenosine

1

1.3

-

-

-

-

-

-

2–6

1.1

-

-

-

-

-

-

PNP 3FTx; ~U3FVH8, 3FTx 4a Micrurus fulvius

7

3.2

10 İ (6757)

1707.0

1

FSPGIQTSQTCPAGQK

99.0

11

8

5.9

9 İ (6638, 7276)

976.5

1

MFIRTHR

76.6

5

1322.7

1

ICDDSSIPFLR

99.0

7

FYFAYQCTSK

man

man

99.0

11

99.0

11

-

-

9

0.2



1314.7

1

10

8.0

9 İ (6361, 6451)

2663.2

1

1375.6

1

DGFYSVTCTEKENLCFT MFSAR ENLCFTMFSAR



-

-

-

11 12

13

14

0.4 1.8

3.6

6.9

9 İ (7045, 7140, 7198)

9 İ (7071, 7201)

9 İ (6845)

1661.8

1

GAYNVCCSTDLCNK

99.0

15

1374.7

1

KCLEFIYGGCQ

99.0

12

1786.9

1

VCYTIFLVGPSYPpy EK

93.5

6

1687.8

1

GPYNVCCSTDLCNK

99

7

1310.7

1

AIEFGCAASCPK

99

12

3FTx; ~P01414 , toxin FS-2 Dendroaspis polylepis 3FTx; ~U3EPK7, 3FTx 6 Micrurus fulvius 3FTx; ~C6JUP1, 3FTx Micrurus corallinus 3FTx; ~C6JUP4, 3FTx Micrurus corallinus Unknown 3FTx; ~U3FAE1, 3FTx 3a Micrurus fulvius Kunitz; ~Q6ITB9, mulgin-3 Pseudechis australis 3FTx; ~AKN63197, 3FTx Micrurus diastema 3FTx; ~B3EWF8, mipartoxin-I Micrurus mipartitus 3FTx; ~AKN63198, 3FTx DK, Micrurus diastema

15a

0.4

12 İ

-

-

-

-

-

unknown

15b

2.5

9 İ (6843, 7311)

1314.7

1

FYFAYQCTSK

man

man

3FTx; ~C6JUP1, 3FTx Micrurus corallinus

16a

0.3

12 İ

-

-

-

-

-

unknown

16b

0.2

10 İ

1373.6

1

CKDFVCNCDR

99.0

7

PLA2 ; ~U3FYP8, PLA2 13 Micrurus fulvius

17a

1.7

13 İ

1373.6 1085.4

1 1

CKDFVCNCDR DFVCNCDR

99.0 96.8

14 6

PLA2 ; ~U3FYP8, PLA2 13 Micrurus fulvius

17b

1.2



-

-

-

-

-

unknown

2969.3

1

99.0

12

18

6.6

13 İ (13353)

1373.5

1

99.0

12

2983.3

1

98.5

6

HWVSFTNYGCYCGYGG SGTPVDELDK CKDFVCNCDR HWLSFTNYGCYCGYGG SGTPVDELDK

PLA2 ; ~P81167, nigroxin B Micrurus nigrocinctus PLA2 ; ~U3FYP8, PLA2 13 Micrurus fulvius

19

11.3

13 İ (13477)

1373.6

1

CKDFVCNCDR

99.0

9

PLA2 ; ~U3FYN8, PLA2 9 Micrurus fulvius

20

1.8

13 İ

2855.3

1

SAWDFTNYGCYCGAGG SGTPVDELDR

99.0

15

PLA2 ; ~Q8AXW7, PLA2 Micrurus corallinus

2841.3

1

AWDYNNda YGCYCGQG GSGTPVDDLDR

99

12

1335.7

1

VHDDCYAAAEK

99

18

1827.8

1

CCQVHDNCYNEAEK

99

22

1278.6

1

VHDDCYAAAEK

99.0

7

1373.5

1

CKDFVCNCDR

99.0

8

2883.2

1

Sf˝ AWDFTNYGCYCGAG GSGTPVDELDR

99.0

15

21

5.3

12 İ (13331)

22a

2.4

20 İ

22b

4.5

13 İ

PLA2 ; ~R4G7M2, Sut-22 Suta fasciata PLA2 ; ~ U3FYP1, PLA2 3b Micrurus fulvius PLA2 ; ~ A4FS04, natratoxin, Naja atra PLA2 ; ~U3FYP1, PLA2 3b Micrurus fulvius PLA2 ; ~U3FYP8, PLA2 13 Micrurus fulvius PLA2 ; ~Q8AXW7, PLA2 Micrurus corallinus

Toxins 2016, 8, 138

4 of 15

Table 1. Cont. Peak

%

Peptide Ion

Mass, kDa İ (Da)

m/z

z

MS/MS-Derived Sequence *

Conf (%)

Sc **

Protein Family; ~ Related Protein and Species ***

VHDDCYAAAEK

99.0

8

PLA2 ; ~U3FYP1, PLA2 3b Micrurus fulvius

99.0

16

PLA2 ; ~P00606, PLA2 Bungarus multicinctus

23a

0.6

13 İ

1278.5

1

23b

2.1

11 İ

2883.3

1

24

16.1

10 İ (7537)

1478.7 1322.6 1108.6

1 1 1

RICDDSSIPFLR ICDDSSIPFLR KGCASSCPKN

99 99 99

12 15 13

3FTx; ~U3EPK7, 3FTx 10a Micrurus fulvius

25

0.9

10 İ

1322.6

1

ICDDSSIPFLR

99.0

9

3FTx; ~U3EPK7, 3FTx 6 Micrurus fulvius

26

1.1

22 İ

1183.7

1

NVWIGLNDPR

man

man

CTL; ~ACC67944, mannose-binding 1 Pseudechis porphyriacus

27

0.1

-

-

-

-

-

-

28a

0.2

38 İ

PWky IGYVNYGCYCGAGG SGTPVDELDR

1054.5

1

TYWHYER

99.0

11

1130.6

1

EVFDGHTIGR

man

man

unknown MP; ~U3FWL3, MTP4 Micrurus fulvius MP; ~P85314, MP Bothrops moojeni MP: ~R4G7J1, MP-Hop-13 Hoplocephalus bungaroides

28b

0.2

29 İ

1297.6

1

SAECPTDSFQR

99.0

7

29a

0.6

38 İ

-

-

-

-

-

unknown

29b

0.2

28 İ

1011.6

1

FYVVVDNR

90.9

9

MP; ~ABQ01135, stephensease-1 Hoplocephalus. stephensii

29c

0.2

25 İ

1011.6

1

FYVVVDNR

man

man

MP; ~ABQ01135, stephensease-1 Hoplocephalus. stephensii

30a

0.4

51 İ

995.6

1

Fdh YVVVDNR

man

man

MP; ~ABQ01135, stephensease-1 Hoplocephalus. stephensii

30b

0.4

46 İ

995.6

1

Fdh YVVVDNR

man

man

MP; ~ABQ01135, stephensease-1 Hoplocephalus. stephensii

30c

0.1

29 İ

2171.1

1

GDSGGPLICNGQIQGIVS WGR

99.0

7

SP; ~Q5MCS0, harobin Hydrophis hardwickii

30d

0.2

20 İ

1329.7

1

IHDIKWNFEK

99.0

13

GPX; ~XP_013914274, glutathione peroxidase 3 Thamnophis sirtalis

1637.8

1

NDLEGWHVNLGPMR

99.0

23

LAO; ~U3FYQ2, LAAO 1a Micrurus fulvius

1131.5 1576.9 1484.7

1 1 1

SDDIFSYER IQDNTENVRVAYRam EADYEEFLEIAR

99.0 99.0 99.0

13 13 19

-

1963.1

1

TSGDIVINDLSLIHQLPK

99.0

7

LAO; ~U3FYQ2, LAAO 1a Micrurus fulvius

2275.1

1

99.0

8

-

1484.7

1

IHFAGEYTANDHGWIDS TIK EADYEEFLEIAR

99.0

9

1310.7

1

RFDEIVGGM˝x DR

99.0

10

1460.8

1

QVVPESLFAWER

95.0

7

LAO; ~A0A0A1WCY6, B variant Echis coloratus PLB: ~V8ND68, PLB-like 1 Ophiophagus hannah

1484.7 1963.0

1 1

99.0 99.0

13 17

2275.0

1

99.0

20

1131.5 1576.8

1 1

EADYEEFLEIAR TSGDIVINDLSLIHQLPK IHFAGEYTANDHGWIDS TIK SDDIFSYER IQDNTENVRVAYRam

99.0 99.0

11 12

-

-

-

-

-

31a

31b

31c

31d

2.2

0.5

1.1

0.7

61 İ

50 İ

42 İ

20 İ

LAO; ~U3FYQ2, LAAO 1a Micrurus fulvius

unknown

Toxins 2016, 8, 138

5 of 15

Table 1. Cont. Toxins 2016, 8, 138  Peak

%

5 of 15 

Mass, kDa İ (Da)

31f  31e

0.4  0.2

14 ▼  17 İ

32 

0.9  0.4

14 İ

31f 32

23 ▼ 

Peptide Ion m/z 1637.8  z 1589.8 1 1484.7  1 1466.7 1833.8‐  1 1637.8 1 1484.7 1152.6  1 -

-

MS/MS-Derived Conf (%) Sequence * NDLEGWHVNLGPMR  1  99.0  99.0 NDLEGWHVNLGPMdt R 1  EADYEEFLEIAR  Epy ADYEEFLEIAR 99.099.0 

‐ 

‐  EFVQEDENAWYYIK NDLEGWHVNLGPMR EADYEEFLEIAR 1  LPFYADWIK  -

99.0 ‐  99.0 99.099.0  -

Protein Family; ~ Related Protein and Species ***

Sc ** 12  9 1117 

LAO; ~U3FYQ2, LAAO 1a unknown  Micrurus fulvius SP; ~U3FBP8, prostasin‐ like protein Micrurus  fulvius  unknown

19‐  12 1712  -

▼ reduced SDS‐PAGE apparent mass, in kDa. Selected peaks were analyzed by mass spectrometry,  SP; ~U3FBP8, prostasin-like 0.9 23 İ 1152.6 1 LPFYADWIK 99.0 12 protein Micrurus fulvius and  their  masses  (Da)  are  shown  in  parentheses;  *  Cysteine  residues  are  carbamidomethylated.  İ reduced SDS-PAGE apparent mass, in kDa. Selected peaks were analyzed by mass spectrometry, and their Possible, although unconfirmed/ambiguous amino acid modifications, suggested by the automated  masses (Da) are shown in parentheses; * Cysteine residues are carbamidomethylated. Possible, although identification software are shown in superscript, with the following abbreviations: ox: oxidized; da:  unconfirmed/ambiguous amino acid modifications, suggested by the automated identification software are shown in superscript, with the following abbreviations: ox: oxidized; da: deamidated; py: pyroglutamic; deamidated; py: pyroglutamic; fo: formyl; dh: dehydrated; am: amidated; ky: hydroxykynurenin; dt:  fo: formyl; dh: dehydrated; am: amidated; ky: hydroxykynurenin; dt: dethiomethyl; ** Confidence (Conf) ® algorithm of  dethiomethyl; ** Confidence (Conf) and score (Sc) values are calculated by the Paragon and score (Sc) values are calculated by the Paragon® algorithm of ProteinPilot® v.4.0. Few spectra that ®   v.4.0.  Few  spectra  by that  were ***manually  resolved  are  indicated  by  ‘‘man’‘;  ProteinPilot were manually resolved are indicated “man’‘; Abbreviations: PNP: peptide or non-proteic; 3FTx:   three-finger toxin; PLA A2 ; Kunitz: 3FTx:  Kunitz-type serine proteinase inhibitor; CTL: C-typeA2;  2 : phospholipase ***  Abbreviations:  PNP:  peptide  or  non‐proteic;  three‐finger  toxin;  PLA 2:  phospholipase  lectin/lectin-like; MP: metalloproteinase; SP: serine proteinase; LAO: L-amino acid oxidase; PLB: phospholibase Kunitz: Kunitz‐type serine proteinase inhibitor; CTL: C‐type lectin/lectin‐like; MP: metalloproteinase;  B; GPX: glutathione peroxidase. SP: serine proteinase; LAO: L‐amino acid oxidase; PLB: phospholibase B; GPX: glutathione peroxidase. 

  Figure 2. Composition of Micrurus clarki venom proteome according to protein families, expressed Figure 2. Composition of Micrurus clarki venom proteome according to protein families, expressed as  as percentages of the total protein content. 3FTx: three-finger toxin; PLA2 : phospholipase A2 ; LAO: percentages of the total protein content. 3FTx: three‐finger toxin; PLA 2: phospholipase A 2; LAO: L‐amino  L-amino acid oxidase; CTL: C-type lectin/lectin-like; MP: metalloproteinase, SP: serine proteinase; acid  oxidase;  CTL:  C‐type  lectin/lectin‐like;  MP:  metalloproteinase,  SP:  serine  proteinase;    KUN: Kunitz-type serine proteinase inhibitor; GPX: Glutathione peroxidase; PLB: phospholipase B; KUN: Kunitz‐type serine proteinase inhibitor; GPX: Glutathione peroxidase; PLB: phospholipase B;  PNP: peptides and/or non-proteinaceous components; UNK: unknown/unidentified. PNP: peptides and/or non‐proteinaceous components; UNK: unknown/unidentified. 

In addition addition toto  abundant  3FTxs  2s,  other  proteins  detected  in proportions lower  proportions  In itsits  abundant 3FTxs andand  PLAPLA proteins detected in lower (within 2 s, other (within  of  0.9%–3.8%)  to  the acid L‐amino  acid  oxidase,  metalloproteinase,  serine  the rangethe  of range  0.9%–3.8%) belong to belong  the L-amino oxidase, metalloproteinase, serine proteinase, proteinase,  Kunitz‐type  serine  proteinase  inhibitor,  and  C‐type  lectin/lectin‐like  families,  together  Kunitz-type serine proteinase inhibitor, and C-type lectin/lectin-like families, together with traces with traces (~0.2%) of phospholipase B and glutathion peroxidase components (Figure 2). Altogether,  (~0.2%) of phospholipase B and glutathion peroxidase components (Figure 2). Altogether, proteins in proteins in this venom belong to at least nine families. As expected, the rapidly eluting peaks in the  this venom belong to at least nine families. As expected, the rapidly eluting peaks in the RP-HPLC RP‐HPLC separation of the venom (Figure 1B; peaks 1–6), did not show proteins by electrophoresis,  separation of the venom (Figure 1B; peaks 1–6), did not show proteins by electrophoresis, and are and are considered to contain either small peptides or non‐proteinaceous compounds (PNP; 2.4%).  considered to contain either small peptides or non-proteinaceous compounds (PNP; 2.4%). The most The  most  intense  of  these  initial  were by analyzed  by and nESI‐MS,  and  clear  evidence  for  intense of these initial peaks (1–3)peaks  were (1–3)  analyzed nESI-MS, clear evidence for adenosine adenosine  being  present  in obtained peak  1  was  obtained  (Figure  3).  Adenosine  has  found  in  several  being present in peak 1 was (Figure 3). Adenosine has been found inbeen  several venoms from venoms from Micrurus species, although not ubiquitously [10,11], and may have a contributing role  Micrurus species, although not ubiquitously [10,11], and may have a contributing role in envenoming in envenoming strategies [12], a hypothesis which still remains to be studied in detail.  strategies [12], a hypothesis which still remains to be studied in detail.

Toxins 2016, 8, 138 Toxins 2016, 8, 138 

66 of 15  of 15

  Figure 3. Detection of adenosine in Micrurus clarki venom by nESI-MS/MS. (A) Fraction 1 from Figure 1 Figure 3. Detection of adenosine in Micrurus clarki venom by nESI‐MS/MS. (A) Fraction 1 from Figure 1  was directly infused into the nano-spray ion source of a QTrap 3200 mass spectrometrer, and scanned was directly infused into the nano‐spray ion source of a QTrap 3200 mass spectrometrer, and scanned  in positive enhanced MS mode; and (B) the ion labeled at m/z 268.2 (dotted red circle in A) was selected in  positive  enhanced  MS  mode;  and  (B)  the  ion  labeled  at  m/z  268.2  (dotted  red  circle  in  A)  was  for collision-induced dissociation, showing the characteristic fragment of m/z 136.1, which corresponds selected for collision‐induced dissociation, showing the characteristic fragment of m/z 136.1, which  to the transition of adenosine to adenine. corresponds to the transition of adenosine to adenine. 

2.2. Immunological Properties of Micrurus Clarki Venom 2.2. Immunological Properties of Micrurus Clarki Venom  Since Since  the the  antivenom antivenom  used used  therapeutically therapeutically  for for  coral coral  snake snake  envenomings envenomings  in in  Central Central  America America    (SAC-ICP) is prepared by immunization of horses with the venom of a single species, M. nigrocinctus, (SAC‐ICP) is prepared by immunization of horses with the venom of a single species, M. nigrocinctus,  it was of interest to characterize its immunological cross-recognition and cross-neutralization toward it was of interest to characterize its immunological cross‐recognition and cross‐neutralization toward  the untested venom of M. clarki. As shown by ELISA titration curves, this antivenom strongly the untested venom of M. clarki. As shown by ELISA titration curves, this antivenom strongly cross‐ cross-recognized M. clarki whole venom, resulting in antibody binding signals virtually as high as recognized M. clarki whole venom, resulting in antibody binding signals virtually as high as those  those obtained for the homologous nigrocinctus) venom (Figure Thisfinding  findingevidences  evidences the  the high  high obtained  for  the  homologous  (M. (M. nigrocinctus)  venom  (Figure  4). 4).This  degree of antigenic conservation between venoms of these two coral snake species. Following this degree of antigenic conservation between venoms of these two coral snake species. Following this  result, detailed cross-recognition analysis was was  performed using using  the RP-HPLC-separated venom result, aa more more  detailed  cross‐recognition  analysis  performed  the  RP‐HPLC‐separated  fractions of M. clarki, revealing additional information. First, it evidenced that the antivenom contains venom fractions of M. clarki, revealing additional information. First, it evidenced that the antivenom  antibodies against all of the venom fractions tested, since the binding signals recorded were, in all cases, contains antibodies against all of the venom fractions tested, since the binding signals recorded were,  significantly higher than those of the negative control equine immunoglobulins (Figure 5). Second, it in all cases, significantly higher than those of the negative control equine immunoglobulins (Figure 5).  showed that immunorecognition of smaller proteins, suchproteins,  as 3FTxs such  or Kunitz-type is Second,  it  showed  that  immunorecognition  of  smaller  as  3FTxs  components, or  Kunitz‐type  generally weaker in comparison to recognition of the larger PLA2 s or LAAOs2s or LAAOs (Figure 5).  (Figure 5). The lower components, is generally weaker in comparison to recognition of the larger PLA titers of antibodies against low molecular mass proteins may reflect differences in their immunogenicity, The lower titers of antibodies against low molecular mass proteins may reflect differences in their  and/or epitope availability in the immunoassay, and is in agreement with earlier studies performed immunogenicity, and/or epitope availability in the immunoassay, and is in agreement with earlier  with other Micrurus venoms [13,14] or with venoms from other elapids [15,16]. studies performed with other Micrurus venoms [13,14] or with venoms from other elapids [15,16]. 

Toxins 2016, 8, 138 Toxins 2016, 8, 138  Toxins 2016, 8, 138 

7 of 15 7 of 15  7 of 15 

   Figure 4. Cross‐recognition of the venom of Micrurus clarki by an equine antivenom raised against M.  Figure 4. Cross-recognition of the venom of Micrurus clarki by an equine antivenom raised against Figure 4. Cross‐recognition of the venom of Micrurus clarki by an equine antivenom raised against M.  nigrocinctus venom (SAC‐ICP), as evaluated by ELISA. Crude venom from each of the two species  M. nigrocinctus venom (SAC-ICP), as evaluated by ELISA. Crude venom from each of the two species nigrocinctus venom (SAC‐ICP), as evaluated by ELISA. Crude venom from each of the two species  was coated onto microplates at 1 g/well, as described in Methods. Serial dilutions of the antivenom  was coated onto microplates at 1 µg/well, as described in Methods. Serial dilutions of the antivenom was coated onto microplates at 1 g/well, as described in Methods. Serial dilutions of the antivenom  were added and the binding of antibodies was detected by anti‐equine immunoglobulins conjugated  were added and the binding of antibodies was detected by anti-equine immunoglobulins conjugated to were added and the binding of antibodies was detected by anti‐equine immunoglobulins conjugated  to alkaline phosphatase, followed by color development using p‐nitrophenylphosphate substrate. A  alkaline phosphatase, followed by color development using p-nitrophenylphosphate substrate. A mock to alkaline phosphatase, followed by color development using p‐nitrophenylphosphate substrate. A  mock  antivenom  prepared  using  the  plasma  plasma  of  a  a  non-immunized normal,  non‐immunized  non‐immunized  horse,  was  used  as  a  a  antivenom prepared using the plasma of a normal, horse, was usedwas  as aused  negative mock  antivenom  prepared  using  the  of  normal,  horse,  as    negative control for background. Each point represents mean ± SD of triplicate wells. control for background. Each point represents mean ˘ SD of triplicate wells.   negative control for background. Each point represents mean ± SD of triplicate wells.

   Figure 5.5.  5.  Immunorecognition  Immunorecognition  of  of  the  RP-HPLC RP‐HPLC  fractions fractions  of of  Micrurus Micrurus  clarki clarki  venom venom  by by an an equine equine  Figure Immunorecognition of the  the Figure  RP‐HPLC  fractions  of  Micrurus  clarki  venom  by  an  equine  monospecific  antivenom  raised  against  M.  nigrocinctus  venom  (SAC‐ICP),  as  evaluated  by  ELISA.  monospecific antivenom raised against M. nigrocinctus venom (SAC-ICP), as evaluated by ELISA. monospecific  antivenom  raised  against  M.  nigrocinctus  venom  (SAC‐ICP),  as  evaluated  by  ELISA.  Venom fractions fractions  (0.4  g/well)  were  coated  onto  microplates,  and  the  binding  binding  of  antibodies  antibodies  was  Venom (0.4 µg/well) were coated ontoonto  microplates, and the binding of antibodies was detected Venom  fractions  (0.4  g/well)  were  coated  microplates,  and  the  of  was  detected  as  described  in  Methods,  using  anti‐equine  immunoglobulins  conjugated  to  alkaline  as described Methods,in using anti-equine conjugated toconjugated  alkaline phosphatase, detected  as  in described  Methods,  using  immunoglobulins anti‐equine  immunoglobulins  to  alkaline  phosphatase,  followed  by  color  color  development  using  p‐nitrophenylphosphate  p‐nitrophenylphosphate  substrate.  Mock  followed by color development using p-nitrophenylphosphate substrate. Mock antivenom prepared phosphatase,  followed  by  development  using  substrate.  Mock  antivenom prepared using the plasma of a normal, non‐immunized horse, was used as a negative  using the plasma of a normal, non-immunized horse, was used as a negative control for background. antivenom prepared using the plasma of a normal, non‐immunized horse, was used as a negative  control for background. Each bar represents mean ± SD of triplicate wells. All bars corresponding to  Each bar represents mean ˘ SD of triplicate wells. All bars corresponding to SAC-ICP have values control for background. Each bar represents mean ± SD of triplicate wells. All bars corresponding to  SAC‐ICP have values that are significantly higher (p 

Venom of the Coral Snake Micrurus clarki: Proteomic Profile, Toxicity, Immunological Cross-Neutralization, and Characterization of a Three-Finger Toxin.

Micrurus clarki is an uncommon coral snake distributed from the Southeastern Pacific of Costa Rica to Western Colombia, for which no information on it...
3MB Sizes 0 Downloads 8 Views