Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2014, Article ID 929162, 5 pages http://dx.doi.org/10.1155/2014/929162

Research Article On Fuzzy Positive Implicative Filters in 𝐡𝐸-Algebras Sun Shin Ahn1 and Jeong Soon Han2 1 2

Department of Mathematics Education, Dongguk University, Seoul 100-715, Republic of Korea Department of Applied Mathematics, Hanyang University, Ansan 426-791, Republic of Korea

Correspondence should be addressed to Jeong Soon Han; [email protected] Received 28 March 2014; Accepted 9 May 2014; Published 25 May 2014 Academic Editor: Hee S. Kim Copyright Β© 2014 S. S. Ahn and J. S. Han. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study several degrees in defining a fuzzy positive implicative filter, which is a generalization of a fuzzy filter in BE-algebras.

1. Introduction In [1], H. S. Kim and Y. H. Kim introduced the notion of a 𝐡𝐸-algebra. Ahn and So [2, 3] introduced the notion of ideals in 𝐡𝐸-algebras. Ahn et al. [4] fuzzified the concept of 𝐡𝐸-algebras and investigated some of their properties. Jun and Ahn [5] provided several degrees in defining a fuzzy implicative filter. In this paper, we study several degrees in defining a fuzzy positive implicative filter, which is a generalization of a fuzzy filter in 𝐡𝐸-algebras.

2. Preliminaries We recall some definitions and results discussed in [1–3]. An algebra (𝑋; βˆ—, 1) of type (2, 0) is called a 𝐡𝐸-algebra if (BE1) π‘₯ βˆ— π‘₯ = 1 for all π‘₯ ∈ 𝑋, (BE2) π‘₯ βˆ— 1 = 1 for all π‘₯ ∈ 𝑋, (BE3) 1 βˆ— π‘₯ = π‘₯ for all π‘₯ ∈ 𝑋, (BE4) π‘₯ βˆ— (𝑦 βˆ— 𝑧) = 𝑦 βˆ— (π‘₯ βˆ— 𝑧), for all π‘₯, 𝑦, 𝑧 ∈ 𝑋 (exchange). We introduce a relation β€œβ‰€β€ on a 𝐡𝐸-algebra 𝑋 by π‘₯ ≀ 𝑦, if and only if π‘₯βˆ—π‘¦ = 1. A nonempty subset 𝑆 of a 𝐡𝐸-algebra 𝑋 is said to be a subalgebra of 𝑋, if it is closed under the operation β€œβˆ—.” By noticing that π‘₯ βˆ— π‘₯ = 1, for all π‘₯ ∈ 𝑋, it is clear that 1 ∈ 𝑆. A 𝐡𝐸-algebra (𝑋; βˆ—, 1) is said to be self-distributive, if π‘₯ βˆ— (𝑦 βˆ— 𝑧) = (π‘₯ βˆ— 𝑦) βˆ— (π‘₯ βˆ— 𝑧), for all π‘₯, 𝑦, 𝑧 ∈ 𝑋.

Definition 1 (see [1]). Let (𝑋; βˆ—, 1) be a 𝐡𝐸-algebra and let 𝐹 be a nonempty subset of 𝑋. Then, 𝐹 is called a filter of 𝑋 if (F1) 1 ∈ 𝐹, (F2) π‘₯ βˆ— 𝑦 ∈ 𝐹 and π‘₯ ∈ 𝐹 imply 𝑦 ∈ 𝐹, for all π‘₯, 𝑦, 𝑧 ∈ 𝑋. A nonempty subset 𝐹 of a 𝐡𝐸-algebra 𝑋 is called an implicative filter of 𝑋 if it satisfies (F1) and (F3) π‘₯ βˆ— (𝑦 βˆ— 𝑧) ∈ 𝐹 and π‘₯ βˆ— 𝑦 ∈ 𝐹 imply π‘₯ βˆ— 𝑧 ∈ 𝐹, for all π‘₯, 𝑦, 𝑧 ∈ 𝑋. Example 2 (see [1]). Let 𝑋 := {1, π‘Ž, 𝑏, 𝑐, 𝑑, 0} be a 𝐡𝐸-algebra with the following table: βˆ— 1 π‘Ž 𝑏 𝑐 𝑑 0

1 1 1 1 1 1 1

π‘Ž π‘Ž 1 1 π‘Ž 1 1

𝑏 𝑏 π‘Ž 1 𝑏 π‘Ž 1

𝑐 𝑐 𝑐 𝑐 1 1 1

𝑑 𝑑 𝑐 𝑐 π‘Ž 1 1

0 0 𝑑 𝑐 𝑏 π‘Ž 1

(1)

Then 𝐹1 := {1, π‘Ž, 𝑏} is a filter of 𝑋, but 𝐹2 := {1, π‘Ž} is not a filter of 𝑋, since π‘Ž βˆ— 𝑏 ∈ 𝐹2 and π‘Ž ∈ 𝐹2 , but 𝑏 βˆ‰ 𝐹2 . Proposition 3. Let (𝑋; βˆ—, 1) be a 𝐡𝐸-algebra and let 𝐹 be a filter of 𝑋. If π‘₯ ≀ 𝑦 and π‘₯ ∈ 𝐹, for any 𝑦 ∈ 𝑋, then 𝑦 ∈ 𝐹.

2

The Scientific World Journal

Proposition 4. Let (𝑋; βˆ—, 1) be a self-distributive 𝐡𝐸-algebra. Then, the following hold, for any π‘₯, 𝑦, 𝑧 ∈ 𝑋: (i) if π‘₯ ≀ 𝑦, then 𝑧 βˆ— π‘₯ ≀ 𝑧 βˆ— 𝑦 and 𝑦 βˆ— 𝑧 ≀ π‘₯ βˆ— 𝑧; (ii) 𝑦 βˆ— 𝑧 ≀ (𝑧 βˆ— π‘₯) βˆ— (𝑦 βˆ— π‘₯);

of 𝑋, since 𝑑 βˆ— (π‘Ž βˆ— 0) = 1 ∈ {1}, 𝑑 βˆ— π‘Ž = 1 ∈ {1}, and 𝑑 βˆ— 0 = π‘Ž βˆ‰ {1}. Also, it is not a positive implicative filter of 𝑋, since 1 βˆ— ((π‘Ž βˆ— 𝑏) βˆ— π‘Ž) = 1 ∈ {1}, 1 ∈ {1} and π‘Ž βˆ‰ {1}. (3) Let 𝑋 := {1, π‘Ž, 𝑏, 𝑐} be a self-distributive 𝐡𝐸-algebra ([5]) with the following table:

(iii) 𝑦 βˆ— 𝑧 ≀ (π‘₯ βˆ— 𝑦) βˆ— (π‘₯ βˆ— 𝑧).

βˆ— 1 π‘Ž 𝑏 𝑐

A 𝐡𝐸-algebra (𝑋; βˆ—, 1) is said to be transitive if it satisfies Proposition 4 (iii). Definition 5 (see [5]). A fuzzy subset πœ‡ of a 𝐡𝐸-algebra 𝑋 is called a fuzzy filter of 𝑋, if it satisfies, for all π‘₯, 𝑦 ∈ 𝑋,

1 1 1 1 1

π‘Ž π‘Ž 1 π‘Ž 1

𝑏 𝑏 𝑏 1 𝑏

𝑐 𝑐 𝑐 𝑐 1

(3)

Then {1, 𝑏} is an implicative filter of 𝑋 and {1, π‘Ž, 𝑏} is a positive implicative filter of 𝑋.

(d1) πœ‡(1) β‰₯ πœ‡(π‘₯), (d2) πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦 βˆ— π‘₯), πœ‡(𝑦)}. A fuzzy subset πœ‡ of a 𝐡𝐸-algebra 𝑋 is called a fuzzy implicative filter of 𝑋 if it satisfies (d1) and (d3) πœ‡(π‘₯βˆ—π‘§) β‰₯ min{πœ‡(π‘₯βˆ—(π‘¦βˆ—π‘§)), πœ‡(π‘₯βˆ—π‘¦)}, for all π‘₯, 𝑦, 𝑧 ∈ 𝑋. Definition 6 (see [5]). Let 𝐹 be a nonempty subset of a 𝐡𝐸algebra 𝑋 which is not necessarily a filter of 𝑋. One says that a subset 𝐺 of 𝑋 is an enlarged filter of 𝑋 related to 𝐹, if it satisfies the following: (1) 𝐹 is a subset of 𝐺,

Definition 9. A fuzzy subset πœ‡ of a 𝐡𝐸-algebra 𝑋 is called a fuzzy positive implicative filter of 𝑋, if it satisfies (d1) and (d4) πœ‡(𝑦) β‰₯ min{πœ‡(π‘₯βˆ—((π‘¦βˆ—π‘§)βˆ—π‘¦)), πœ‡(π‘₯)}, for all π‘₯, 𝑦 ∈ 𝑋. Definition 10. Let 𝐹 be a nonempty subset of a 𝐡𝐸-algebra 𝑋 which is not necessarily a positive implicative filter of 𝑋. One says that a subset 𝐺 of 𝑋 is an enlarged positive implicative filter of 𝑋 related to 𝐹, if it satisfies the following: (1) 𝐹 is a subset of 𝐺,

(2) 1 ∈ 𝐺,

(2) 1 ∈ 𝐺,

(3) (βˆ€π‘₯, 𝑦 ∈ 𝑋)(βˆ€π‘₯ ∈ 𝐹)(π‘₯ βˆ— 𝑦 ∈ 𝐹 β‡’ 𝑦 ∈ 𝐺).

(3) (βˆ€π‘₯, 𝑦, 𝑧 ∈ 𝑋)(βˆ€π‘₯ ∈ 𝐹)(π‘₯βˆ—((π‘¦βˆ—π‘§)βˆ—π‘¦) ∈ 𝐹 β‡’ 𝑦 ∈ 𝐺).

3. Fuzzy Positive Implicative Filters of 𝐡𝐸-Algebras with Degrees in (0, 1]

Obviously, every positive implicative filter is an enlarged positive implicative filter of 𝑋 related to itself. Note that there exists an enlarged positive implicative filter of 𝑋 related to any nonempty subset 𝐹 of 𝑋.

𝑋 denotes a 𝐡𝐸-algebra unless specified otherwise. Definition 7. A nonempty subset 𝐹 of 𝑋 is called a positive implicative filter of a 𝐡𝐸-algebra 𝑋 if it satisfies (F1) and (F4) π‘₯ βˆ— ((𝑦 βˆ— 𝑧) βˆ— 𝑦) ∈ 𝐹 and π‘₯ ∈ 𝐹 imply 𝑦 ∈ 𝐹, for all π‘₯, 𝑦, 𝑧 ∈ 𝑋. Note that every positive implicative filter of a 𝐡𝐸-algebra 𝑋 is a filter of 𝑋. Example 8. (1) Let 𝑋 := {1, π‘Ž, 𝑏, 𝑐, 𝑑} be a self-distributive 𝐡𝐸algebra ([1]) with the following table: βˆ— 1 π‘Ž 𝑏 𝑐 𝑑

1 1 1 1 1 1

π‘Ž π‘Ž 1 π‘Ž 1 1

𝑏 𝑏 𝑏 1 𝑏 1

𝑐 𝑐 𝑐 𝑐 1 1

𝑑 𝑑 𝑑 𝑐 𝑏 1

Example 11. Consider a 𝐡𝐸-algebra 𝑋 = {1, π‘Ž, 𝑏, 𝑐, 𝑑} which is given in Example 8 (1). Note that 𝐹 := {1, 𝑏} is not a positive implicative filter. Then, 𝐺 := {1, π‘Ž, 𝑏, 𝑐} is an enlarged positive implicative filter of 𝑋 related to 𝐹 and 𝐺 is not a positive implicative filter of 𝑋, since 𝑏 βˆ— ((𝑑 βˆ— 𝑑) βˆ— 𝑑) = 𝑐 ∈ 𝐺, 𝑏 ∈ 𝐺 and 𝑑 βˆ‰ 𝐺. Proposition 12. Let 𝐹 be a nonempty subset of a 𝐡𝐸-algebra 𝑋. Every enlarged positive implicative filter of 𝑋 related to 𝐹 is an enlarged filter of 𝑋 related to 𝐹. Proof. Let 𝐺 be an enlarged positive implicative filter of 𝑋 related to 𝐹. By putting 𝑧 := 1 in Definition 10 (3), we have

(2)

Then {1, 𝑏} is an implicative filter of 𝑋 but not a positive implicative filter of 𝑋, since 𝑏 βˆ— ((π‘Ž βˆ— 𝑑) βˆ— π‘Ž) = 1, 𝑏 ∈ {1, 𝑏} and π‘Ž βˆ‰ {1, 𝑏}. (2) Consider a 𝐡𝐸-algebra 𝑋 := {1, π‘Ž, 𝑏, 𝑐, 𝑑, 0} as in Example 2. Then {1} is a filter of 𝑋 but not an implicative filter

(βˆ€π‘₯, 𝑦 ∈ 𝑋)

(π‘₯ βˆ— ((𝑦 βˆ— 1) βˆ— 𝑦) = π‘₯ βˆ— 𝑦 ∈ 𝐹, π‘₯ ∈ 𝐹 β‡’ 𝑦 ∈ 𝐺) .

(4)

Hence, 𝐺 is an enlarged filter of 𝑋 related to 𝐹. The converse of Proposition 12 is not true in general as seen in the following example.

The Scientific World Journal

3

Example 13. Let 𝑋 := {1, π‘Ž, 𝑏, 𝑐} be a transitive 𝐡𝐸-algebra ([2]) with the following table: βˆ— 1 π‘Ž 𝑏 𝑐

1 1 1 1 1

π‘Ž π‘Ž 1 1 1

𝑏 𝑏 π‘Ž 1 π‘Ž

a fuzzy filter of 𝑋 nor a fuzzy positive implicative filter of 𝑋 with degree (2/5, 3/5) since πœ‡ (1) = 0.7 β‰₯ΜΈ 0.8 = πœ‡ (𝑏) ,

𝑐 𝑐 π‘Ž π‘Ž 1

(5)

πœ‡ (π‘Ž) = 0.4 β‰₯ΜΈ 0.42 = =

Let 𝐹 := {1} and 𝐺 := {1, 𝑐}. Then 𝐺 is an enlarged filter of 𝐹 but it is not an enlarged positive implicative filter of 𝐹, since 1 βˆ— ((π‘Ž βˆ— 𝑐) βˆ— π‘Ž) = 1 ∈ 𝐹, 1 ∈ 𝐹 and π‘Ž βˆ‰ 𝐺. In what follows let πœ† and πœ… be members of (0, 1], and let 𝑛 and π‘˜ denote a natural number and a real number, respectively, such that π‘˜ < 𝑛, unless otherwise specified.

3 Γ— 0.7 5 (7)

3 Γ— πœ‡ (1) 5

3 Γ— min {πœ‡ (1 βˆ— ((π‘Ž βˆ— 𝑐) βˆ— π‘Ž)) = πœ‡ (1) , πœ‡ (1)} . 5 Example 18. Let 𝑋 := {1, π‘Ž, 𝑏, 𝑐} be a 𝐡𝐸-algebra ([2]) with the following table: =

Definition 14 (see [5]). A fuzzy subset πœ‡ of a 𝐡𝐸-algebra 𝑋 is called a fuzzy filter of 𝑋 with degree (πœ†, πœ…), if it satisfies the following: (e1) (βˆ€π‘₯ ∈ 𝑋)(πœ‡(1) β‰₯ πœ†πœ‡(π‘₯)),

π‘Ž π‘Ž 1 1 π‘Ž

𝑏 𝑏 𝑏 1 𝑐

𝑐 𝑐 𝑐 1 1

(8)

Define a fuzzy subset πœ‡ : 𝑋 β†’ [0, 1] by

(e2) (βˆ€π‘₯, 𝑦 ∈ 𝑋)(πœ‡(π‘₯) β‰₯ πœ… min{πœ‡(𝑦 βˆ— π‘₯), πœ‡(𝑦)}). A fuzzy subset πœ‡ of a 𝐡𝐸-algebra 𝑋 is called a fuzzy implicative filter of 𝑋 with degree (πœ†, πœ…), if it satisfies (e1) and (e3) (βˆ€π‘₯, 𝑦, 𝑧 ∈ 𝑋)(πœ‡(π‘₯ βˆ— 𝑧) β‰₯ πœ… min{πœ‡(π‘₯ βˆ— (𝑦 βˆ— 𝑧)), πœ‡(π‘₯ βˆ— 𝑦)}). Definition 15. A fuzzy subset πœ‡ of a 𝐡𝐸-algebra 𝑋 is called a fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…), if it satisfies (e1) and (e4) (βˆ€π‘₯, 𝑦, 𝑧 ∈ 𝑋)(πœ‡(𝑦) β‰₯ πœ… min{πœ‡(π‘₯ βˆ— ((𝑦 βˆ— 𝑧) βˆ— 𝑦)), πœ‡(π‘₯)}). Proposition 16 (see [5]). Every fuzzy filter of a 𝐡𝐸-algebra 𝑋 with degree (πœ†, πœ…) satisfies the following assertions: (i) (βˆ€π‘₯, 𝑦 ∈ 𝑋)(πœ‡(π‘₯ βˆ— 𝑦) β‰₯ πœ†πœ…πœ‡(𝑦)); 𝑦 βˆ— 𝑧

β‡’

πœ‡(𝑧)

β‰₯

Note that if πœ† =ΜΈ πœ…, then a fuzzy positive implicative filter with degree (πœ†, πœ…) may not be a fuzzy positive implicative filter with degree (πœ…, πœ†) and vice versa. Obviously, every fuzzy positive implicative filter is a fuzzy positive implicative filter with degree (πœ†, πœ…), but the converse may not be true. Example 17. Consider a self-distributive 𝐡𝐸-algebra 𝑋 = {1, π‘Ž, 𝑏, 𝑐} which is given in Example 8 (3). Define a fuzzy subset πœ‡ : 𝑋 β†’ [0, 1] by 1 π‘Ž 𝑏 𝑐 πœ‡=( ). 0.7 0.4 0.8 0.4

1 π‘Ž 𝑏 𝑐 ). 0.7 0.8 0.4 0.4

πœ‡=(

(6)

Then, πœ‡ is a fuzzy implicative filter of 𝑋 with degree (2/5, 3/5) and a fuzzy filter of 𝑋 with degree (2/5, 3/5), but it is neither

(9)

Then, πœ‡ is a fuzzy positive implicative filter of 𝑋 with degree (3/5, 2/5). But it is neither a fuzzy filter of 𝑋 nor a fuzzy positive implicative filter of 𝑋 with degree (2/5, 3/5) since πœ‡ (1) = 0.7 β‰₯ΜΈ 0.8 = πœ‡ (π‘Ž) , πœ‡ (𝑐) = 0.4 β‰₯ΜΈ 0.42 = =

3 Γ— 0.7 5 (10)

3 Γ— πœ‡ (1) 5

3 Γ— min {πœ‡ (π‘Ž βˆ— ((𝑐 βˆ— 𝑏) βˆ— 𝑐)) = πœ‡ (1) , πœ‡ (π‘Ž)} . 5 Also, it is not a fuzzy implicative filter of 𝑋 with degree (2/5, 3/5) since =

πœ‡ (𝑐 βˆ— 𝑏) = πœ‡ (𝑐) = 0.4 β‰₯ΜΈ 0.42 =

(ii) (βˆ€π‘₯, 𝑦 ∈ 𝑋)(𝑦 ≀ π‘₯ β‡’ πœ‡(π‘₯) β‰₯ πœ†πœ…πœ‡(𝑦)); (iii) (βˆ€π‘₯, 𝑦, 𝑧 ∈ 𝑋)(π‘₯ ≀ min{πœ…πœ‡(𝑦), πœ†πœ…2 πœ‡(π‘₯)}).

1 1 1 1 1

βˆ— 1 π‘Ž 𝑏 𝑐

=

3 Γ— 0.7 5

3 Γ— πœ‡ (1) 5

(11)

3 = Γ— min {πœ‡ (𝑐 βˆ— (𝑐 βˆ— 𝑏)) 5 = πœ‡ (1) , πœ‡ (𝑐 βˆ— 𝑐) = πœ‡ (1)} . Proposition 19. If πœ‡ is a fuzzy positive implicative filter of a 𝐡𝐸-algebra 𝑋 with degree (πœ†, πœ…), then πœ‡ is a fuzzy filter of 𝑋 with degree (πœ†, πœ…). Proof. By putting 𝑧 := 𝑦 in (e4), we have πœ‡ (𝑦) β‰₯ πœ… min { πœ‡ (π‘₯ βˆ— ((𝑦 βˆ— 𝑦) βˆ— 𝑦)) , πœ‡ (π‘₯) } = πœ… min {πœ‡ (π‘₯ βˆ— 𝑦) , πœ‡ (π‘₯)}

(12)

for any π‘₯, 𝑦 ∈ 𝑋. Thus, πœ‡ is a fuzzy filter of 𝑋 with degree (πœ†, πœ…).

4

The Scientific World Journal

The converse of Proposition 19 is not true in general (see Example 17). Note that a fuzzy filter with degree (πœ†, πœ…) is a fuzzy filter if and only if (πœ†, πœ…) = (1, 1). Proposition 20. Let πœ‡ be a fuzzy positive implicative filter of a 𝐡𝐸-algebra 𝑋 with degree (πœ†, πœ…). Then, the following holds: (βˆ€π‘₯, 𝑦 ∈ 𝑋)

(πœ‡ (π‘₯) β‰₯ πœ…πœ†πœ‡ ((π‘₯ βˆ— 𝑦) βˆ— π‘₯)) .

(13)

Proof. Assume that πœ‡ is a fuzzy positive implicative filter of a 𝐡𝐸-algebra 𝑋 with degree (πœ†, πœ…) and let π‘₯, 𝑦 ∈ 𝑋. Using (e4) and (e1), we have

(14)

= πœ…πœ†πœ‡ ((π‘₯ βˆ— 𝑦) βˆ— π‘₯) .

(15)

Then, πœ‡ is a positive implicative filter of 𝑋 with degree (πœ†, πœ…). Proof. Let π‘₯, 𝑦, 𝑧 ∈ 𝑋. Using (e2), we have πœ‡ (𝑦) β‰₯ πœ‡ ((𝑦 βˆ— 𝑧) βˆ— 𝑦) β‰₯ πœ… min { πœ‡ (π‘₯ βˆ— ((𝑦 βˆ— 𝑧) βˆ— 𝑦)) , πœ‡ (π‘₯) } .

(π‘₯ βˆ— 𝑦) βˆ— 𝑦 ≀ (𝑦 βˆ— π‘₯) βˆ— ((π‘₯ βˆ— 𝑦) βˆ— π‘₯) (19)

≀ (((𝑦 βˆ— π‘₯) βˆ— π‘₯) βˆ— 𝑦) βˆ— ((𝑦 βˆ— π‘₯) βˆ— π‘₯) .

β‰₯ min {πœ…πœ‡ (((𝑦 βˆ— π‘₯) βˆ— π‘₯) βˆ— 𝑦) , πœ†πœ…2 πœ‡ ((π‘₯ βˆ— 𝑦) βˆ— 𝑦)} β‰₯ min {πœ…2 πœ†πœ‡ (𝑦) , (πœ†πœ…2 ) πœ…πœ†πœ‡ (𝑦)} = πœ…2 πœ† min {πœ‡ (𝑦) , πœ†πœ…πœ‡ (𝑦)} = πœ…2 πœ† (πœ†πœ…) πœ‡ (𝑦) (20)

(16) This completes the proof.

Corollary 22. Let πœ‡ be a fuzzy filter of 𝑋. Then, πœ‡ is a fuzzy positive implicative filter of 𝑋, if and only if (πœ‡ (π‘₯) β‰₯ πœ‡ ((π‘₯ βˆ— 𝑦) βˆ— π‘₯)) .

Proof. Let π‘₯, 𝑦 ∈ 𝑋. Let πœ‡ be a fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…). By Proposition 19, πœ‡ is a fuzzy filter of 𝑋 with degree (πœ†, πœ…). Since π‘₯ ≀ (𝑦 βˆ— π‘₯) βˆ— π‘₯, using Proposition 4 (i), we have ((𝑦 βˆ— π‘₯) βˆ— π‘₯) βˆ— 𝑦 ≀ π‘₯ βˆ— 𝑦. Hence,

= πœ†2 πœ…3 πœ‡ (𝑦) .

Thus, πœ‡ is a positive implicative filter of a 𝐡𝐸-algebra 𝑋 with degree (πœ†, πœ…).

(βˆ€π‘₯, 𝑦 ∈ 𝑋)

(18)

πœ‡ ((𝑦 βˆ— π‘₯) βˆ— π‘₯)

Proposition 21. Let πœ‡ be a fuzzy filter of a 𝐡𝐸-algebra 𝑋 with degree (πœ†, πœ…) satisfying (πœ‡ (π‘₯) β‰₯ πœ‡ ((π‘₯ βˆ— 𝑦) βˆ— π‘₯)) .

(πœ‡ ((𝑦 βˆ— π‘₯) βˆ— π‘₯) β‰₯ πœ†2 πœ…3 πœ‡ (𝑦)) .

Using Propositions 16 and 23, we have

This completes the proof.

(βˆ€π‘₯, 𝑦 ∈ 𝑋)

(βˆ€π‘₯, 𝑦 ∈ 𝑋)

= (π‘₯ βˆ— 𝑦) βˆ— ((𝑦 βˆ— π‘₯) βˆ— π‘₯)

πœ‡ (π‘₯) β‰₯ πœ… min {πœ‡ (1 βˆ— ((π‘₯ βˆ— 𝑦) βˆ— π‘₯)) , πœ‡ (1)} = πœ… min {πœ‡ ((π‘₯ βˆ— 𝑦) βˆ— π‘₯) , πœ†πœ‡ ((π‘₯ βˆ— 𝑦) βˆ— π‘₯)}

Proposition 25. Let 𝑋 be a self-distributive 𝐡𝐸-algebra 𝑋. Let πœ‡ be a fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…). Then,

(17)

Proof. It follows from Propositions 20 and 21. Proposition 23. Every fuzzy positive implicative filter of a 𝐡𝐸algebra 𝑋 with degree (πœ†, πœ…) satisfies the following assertions: (i) (βˆ€π‘₯, 𝑦 ∈ 𝑋)(πœ‡(π‘₯ βˆ— 𝑦) β‰₯ πœ†πœ…πœ‡(𝑦)); (ii) (βˆ€π‘₯, 𝑦 ∈ 𝑋)(π‘₯ ≀ 𝑦 β‡’ πœ‡(𝑦) β‰₯ πœ†πœ…πœ‡(π‘₯)). Proof. It follows from Propositions 16 and 19. Corollary 24. Let πœ‡ be a fuzzy positive implicative filter of a 𝐡𝐸-algebra 𝑋 with degree (πœ†, πœ…). If πœ† = πœ…, then

Definition 26. ([6]) Let 𝑋 be a 𝐡𝐸-algebra. 𝑋 is said to be commutative if the following identity holds: (C) (π‘₯ βˆ— 𝑦) βˆ— 𝑦 = (𝑦 βˆ— π‘₯) βˆ— π‘₯; that is, π‘₯ ∨ 𝑦 = 𝑦 ∨ π‘₯, where π‘₯ ∨ 𝑦 = (𝑦 βˆ— π‘₯) βˆ— π‘₯, for all π‘₯, 𝑦 ∈ 𝑋. Theorem 27. Let 𝑋 be a commutative self-distributive 𝐡𝐸algebra. Every fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…) is a fuzzy implicative filter of 𝑋 with degree (πœ†, πœ…3 πœ†2 ). Proof. Let πœ‡ be a fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…). By Proposition 19, πœ‡ is a fuzzy filter of 𝑋 with degree (πœ†, πœ…). Using (BE4) and Proposition 4 (iii), we obtain (π‘₯ βˆ— (𝑦 βˆ— 𝑧)) βˆ— ((π‘₯ βˆ— 𝑦) βˆ— (π‘₯ βˆ— (π‘₯ βˆ— 𝑧))) = 1, for any π‘₯, 𝑦, 𝑧 ∈ 𝑋. Hence, by Proposition 16 (iii), we have πœ‡(π‘₯ βˆ— (π‘₯ βˆ— 𝑧)) β‰₯ min{πœ…πœ‡(π‘₯ βˆ— (𝑦 βˆ— 𝑧)), πœ†πœ…2 πœ‡(π‘₯ βˆ— 𝑦)}. On the other hand, using (BE4) and (C), we obtain ((π‘₯ βˆ— 𝑧) βˆ— 𝑧) βˆ— (π‘₯ βˆ— 𝑧) = π‘₯ βˆ— (((π‘₯ βˆ— 𝑧) βˆ— 𝑧) βˆ— 𝑧) = π‘₯ βˆ— ((𝑧 βˆ— (π‘₯ βˆ— 𝑧)) βˆ— (π‘₯ βˆ— 𝑧))

(i) (βˆ€π‘₯, 𝑦 ∈ 𝑋)(πœ‡(π‘₯ βˆ— 𝑦) β‰₯ πœ†2 πœ‡(𝑦)),

= π‘₯ βˆ— (1 βˆ— (π‘₯ βˆ— 𝑧))

(ii) (βˆ€π‘₯, 𝑦 ∈ 𝑋)(π‘₯ ≀ 𝑦 β‡’ πœ‡(𝑦) β‰₯ πœ†2 πœ‡(π‘₯)).

= π‘₯ βˆ— (π‘₯ βˆ— 𝑧) .

(21)

The Scientific World Journal

5 Corollary 30. Let πœ‡ be a fuzzy subset of a 𝐡𝐸-algebra 𝑋. For any 𝑑 ∈ [0, 1] with 𝑑 ≀ π‘˜/𝑛, if π‘ˆ(πœ‡; 𝑑) is an enlarged positive implicative filter of 𝑋 related to π‘ˆ(πœ‡; (𝑛/π‘˜)𝑑), then πœ‡ is a fuzzy positive implicative filter of 𝑋 with degree (π‘˜/𝑛, π‘˜/𝑛).

Using Proposition 20, we have πœ‡ (π‘₯ βˆ— 𝑧) β‰₯ πœ…πœ†πœ‡ (((π‘₯ βˆ— 𝑧) βˆ— 𝑧) βˆ— (π‘₯ βˆ— 𝑧)) = πœ…πœ†πœ‡ (π‘₯ βˆ— (π‘₯ βˆ— 𝑧)) β‰₯ πœ…πœ† min {πœ…πœ‡ (π‘₯ βˆ— (𝑦 βˆ— 𝑧)) , πœ†πœ…2 πœ‡ (π‘₯ βˆ— 𝑦)} (22) = πœ…2 πœ† min {πœ‡ (π‘₯ βˆ— (𝑦 βˆ— 𝑧)) , πœ…πœ†πœ‡ (π‘₯ βˆ— 𝑦)} β‰₯ πœ…3 πœ†2 min { πœ‡ (π‘₯ βˆ— (𝑦 βˆ— 𝑧)) , πœ‡ (π‘₯ βˆ— 𝑦) } . This completes the proof. Denote by FPI (𝑋) the set of all positive implicative filters of a 𝐡𝐸-algebra 𝑋. Note that a fuzzy subset πœ‡ of a 𝐡𝐸-algebra 𝑋 is a fuzzy positive implicative filter of 𝑋, if and only if (π‘ˆ (πœ‡; 𝑑) ∈ FPI (𝑋) βˆͺ {0}) .

(βˆ€π‘‘ ∈ [0, 1])

(23)

But we know that, for any fuzzy subset πœ‡ of a 𝐡𝐸-algebra 𝑋, there exist πœ†, πœ… ∈ (0, 1) and 𝑑 ∈ [0, 1] such that (1) πœ‡ is a fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…), (2) π‘ˆ(πœ‡; 𝑑) βˆ‰ FPI (𝑋) βˆͺ {0}. Example 28. Consider a 𝐡𝐸-algebra 𝑋 = {1, π‘Ž, 𝑏, 𝑐, 𝑑} which is given in Example 8 (1). Define a fuzzy subset πœ‡ : 𝑋 β†’ [0, 1] by 1 π‘Ž 𝑏 𝑐 𝑑 ). 0.4 0.3 0.5 0.3 0.3

πœ‡=(

Proof. Since 𝑑 min{πœ†, πœ…} ≀ 𝑑, we have π‘ˆ(πœ‡; 𝑑) βŠ† π‘ˆ(πœ‡; 𝑑 min {πœ†, πœ…}). Since π‘ˆ(πœ‡; 𝑑) =ΜΈ 0, there exists π‘₯ ∈ π‘ˆ(πœ‡; 𝑑) and so πœ‡(π‘₯) β‰₯ 𝑑. By (e1), we obtain πœ‡(1) β‰₯ πœ†πœ‡(π‘₯) β‰₯ πœ†π‘‘ β‰₯ 𝑑 min{πœ†, πœ…}. Therefore, 1 ∈ π‘ˆ(πœ‡; 𝑑 min{πœ†, πœ…}). Let π‘₯, 𝑦, 𝑧 ∈ 𝑋 be such that π‘₯ βˆ— ((𝑦 βˆ— 𝑧) βˆ— 𝑦) ∈ π‘ˆ(πœ‡; 𝑑) and π‘₯ ∈ π‘ˆ(πœ‡; 𝑑). Then πœ‡(π‘₯ βˆ— ((𝑦 βˆ— 𝑧) βˆ— 𝑦)) β‰₯ 𝑑 and πœ‡(π‘₯) β‰₯ 𝑑. It follows from (e4) that πœ‡ (𝑦) β‰₯ πœ… min {πœ‡ (π‘₯ βˆ— ((𝑦 βˆ— 𝑧) βˆ— 𝑦)) , πœ‡ (π‘₯)} β‰₯ πœ…π‘‘ β‰₯ 𝑑 min {πœ†, πœ…} ;

(26)

so that 𝑦 ∈ π‘ˆ(πœ‡; 𝑑 min{πœ†, πœ…}). Thus, π‘ˆ(πœ‡; 𝑑 min{πœ†, πœ…}) is an enlarged positive implicative filter of 𝑋 related to π‘ˆ(πœ‡; 𝑑).

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

(24)

If 𝑑 ∈ (0.4, 0.6], then π‘ˆ(πœ‡; 𝑑) = {1, 𝑏} is not a positive implicative filter of 𝑋, since 𝑏 βˆ— ((π‘Ž βˆ— 𝑑) βˆ— π‘Ž) = 1, 𝑏 ∈ {1, 𝑏}, and π‘Ž βˆ‰ {1, 𝑏}. But πœ‡ is a fuzzy positive implicative filter of 𝑋 with degree (0.4, 0.6). Theorem 29. Let πœ‡ be a fuzzy subset of a 𝐡𝐸-algebra 𝑋. For any 𝑑 ∈ [0, 1] with 𝑑 ≀ max{πœ†, πœ…}, if π‘ˆ(πœ‡; 𝑑) is an enlarged positive implicative filter of 𝑋 related to π‘ˆ(πœ‡; 𝑑/ max{πœ†, πœ…}), then πœ‡ is a fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…). Proof. Assume that πœ‡(1) < 𝑑 ≀ πœ†πœ‡(π‘₯), for some π‘₯ ∈ 𝑋 and 𝑑 ∈ (0, πœ†]. Then πœ‡(π‘₯) β‰₯ 𝑑/πœ† β‰₯ 𝑑/ max{πœ†, πœ…} and so π‘₯ ∈ π‘ˆ(πœ‡; 𝑑/ max{πœ†, πœ…}); that is, π‘ˆ(πœ‡; 𝑑/ max{πœ†, πœ…}) =ΜΈ 0. Since π‘ˆ(πœ‡; 𝑑) is an enlarged filter of 𝑋 related to π‘ˆ(πœ‡; 𝑑/ max{πœ†, πœ…}), we have 1 ∈ π‘ˆ(πœ‡; 𝑑); that is, πœ‡(1) β‰₯ 𝑑. This is a contradiction, and thus πœ‡(1) β‰₯ πœ†πœ‡(π‘₯), for all π‘₯ ∈ 𝑋. Now suppose that there exist π‘Ž, 𝑏, 𝑐 ∈ 𝑋 such that πœ‡(𝑏) < πœ… min{πœ‡(π‘Žβˆ—((π‘βˆ—π‘)βˆ—π‘)), πœ‡(π‘Ž)}. If we take 𝑑 := πœ… min{πœ‡(π‘Žβˆ—((π‘βˆ— 𝑐)βˆ—π‘)), πœ‡(π‘Ž)}, then 𝑑 ∈ (0, πœ…] βŠ† (0, max{πœ†, πœ…}]. Hence, π‘Žβˆ—((π‘βˆ— 𝑐) βˆ— 𝑏) ∈ π‘ˆ(πœ‡; 𝑑/πœ…) βŠ† π‘ˆ(πœ‡; 𝑑/ max{πœ†, πœ…}) and π‘Ž ∈ π‘ˆ(πœ‡; 𝑑/πœ…) βŠ† π‘ˆ(πœ‡; 𝑑/ max{πœ†, πœ…}). It follows from Definition 10(3) that 𝑏 ∈ π‘ˆ(πœ‡; 𝑑) so that πœ‡(𝑏) β‰₯ 𝑑, which is impossible. Therefore, πœ‡ (𝑦) β‰₯ πœ… min {πœ‡ (π‘₯ βˆ— ((𝑦 βˆ— 𝑧) βˆ— 𝑦)) , πœ‡ (π‘₯)}

Theorem 31. Let 𝑑 ∈ [0, 1] be such that π‘ˆ(πœ‡; 𝑑) ( =ΜΈ 0) is not necessarily a positive implicative filter of a 𝐡𝐸-algebra 𝑋. If πœ‡ is a fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…), then π‘ˆ(πœ‡; 𝑑 min{πœ†, πœ…}) is an enlarged positive implicative filter of 𝑋 related to π‘ˆ(πœ‡; 𝑑).

(25)

for all π‘₯, 𝑦, 𝑧 ∈ 𝑋. Thus, πœ‡ is a fuzzy positive implicative filter of 𝑋 with degree (πœ†, πœ…).

Acknowledgment The authors are grateful to the referee for their valuable suggestions and help.

References [1] H. S. Kim and Y. H. Kim, β€œOn 𝐡𝐸-algebras,” Scientiae Mathematicae Japonicae, vol. 66, no. 1, pp. 113–116, 2007. [2] S. S. Ahn and K. S. So, β€œOn ideals and upper sets in 𝐡𝐸-algebras,” Scientiae Mathematicae Japonicae, vol. 68, no. 2, pp. 279–285, 2008. [3] S. S. Ahn and K. S. So, β€œOn generalized upper sets in 𝐡𝐸algebras,” Bulletin of the Korean Mathematical Society, vol. 46, no. 2, pp. 281–287, 2009. [4] S. S. Ahn, Y. H. Kim, and K. S. So, β€œFuzzy 𝐡𝐸-algebras,” Journal of Applied Mathematics & Informatics, vol. 29, no. 3-4, pp. 1049– 1057, 2011. [5] Y. B. Jun and S. S. Ahn, β€œFuzzy implicative filters with degrees in the interval (0, 1],” Journal of Computational Analysis and Applications, vol. 15, pp. 1456–1466, 2013. [6] S. S. Ahn, Y. H. Kim, and J. M. Ko, β€œFilters in commutative 𝐡𝐸algebras,” Korean Mathematical Society. Communications, vol. 27, no. 2, pp. 233–242, 2012.

On fuzzy positive implicative filters in BE-algebras.

We study several degrees in defining a fuzzy positive implicative filter, which is a generalization of a fuzzy filter in BE-algebras...
500KB Sizes 1 Downloads 3 Views