Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2014, Article ID 718972, 8 pages http://dx.doi.org/10.1155/2014/718972

Research Article On Some Fuzzy Filters in Pseudo-BCI Algebras Xiaohong Zhang College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China Correspondence should be addressed to Xiaohong Zhang; [email protected] Received 2 March 2014; Accepted 9 March 2014; Published 8 April 2014 Academic Editor: Wieslaw A. Dudek Copyright Β© 2014 Xiaohong Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Some new properties of fuzzy associative filters (also known as fuzzy associative pseudo-filters), fuzzy p-filter (also known as fuzzy pseudo-p-filters), and fuzzy a-filter (also known as fuzzy pseudo-a-filters) in pseudo-BCI algebras are investigated. By these properties, the following important results are proved: (1) a fuzzy filter (also known as fuzzy pseudo-filters) of a pseudo-BCI algebra is a fuzzy associative filter if and only if it is a fuzzy a-filter; (2) a filter (also known as pseudo-filter) of a pseudo-BCI algebra is associative if and only if it is an a-filter (also call it pseudo-π‘Ž filter); (3) a fuzzy filter of a pseudo-BCI algebra is fuzzy a-filter if and only if it is both a fuzzy p-filter and a fuzzy q-filter.

1. Introduction and Preliminaries In the field of artificial intelligence research, nonclassical logics (fuzzy logic, epistemic logic, nonmonotonic logic, default logic, etc.) are extensively used (see [1]). In this paper we discuss a kind of logic algebra system, that is, pseudo𝐡𝐢𝐼 algebra, which originated from 𝐡𝐢𝐼-logic; it is a kind of nonclassical logic and inspired by the calculus of combinators [2]. Newly, in [3], we show that pseudo-𝐡𝐢𝐼 algebra plays an important role in weakly integral residuated algebraic structure, which is in close connection with various fuzzy logic formal systems [4, 5]. In 1966, IsΒ΄eki [2] introduced the concept of 𝐡𝐢𝐼-algebra as an algebraic counterpart of the 𝐡𝐢𝐼-logic. Since then, the ideal theory of 𝐡𝐢𝐼-algebras gets in-depth research and development. In 2008, as a generalization of 𝐡𝐢𝐼-algebra, Dudek and Jun [6] introduced the notion of pseudo-𝐡𝐢𝐼 algebra which is also generalization of pseudo-𝐡𝐢𝐾 algebra introduced by Georgescu and Iorgulescu in [7]. We investigated some classes of pseudo-𝐡𝐢𝐼 algebras in [8]. Recently, the pseudoideal theory of pseudo-𝐡𝐢𝐼 algebras has been studied: the notion of pseudo-𝐡𝐢𝐼 ideal (or pseudoideal) of pseudo-𝐡𝐢𝐼 algebra is introduced in [9]; some special pseudo-𝐡𝐢𝐼 ideals are discussed in [10], for example, associative pseudoideal and pseudo-π‘Ž ideal, which are generalization of associative ideal of 𝐡𝐢𝐼-algebra (it is introduced by X.H. Zhang and R.G. Ling).

The notion of fuzzy sets has been applied to many algebraic systems (see [4, 11, 12]); naturally, it has been applied to pseudo-𝐡𝐢𝐾/𝐡𝐢𝐼 algebra; for example, fuzzy pseudoideals have been investigated in [13–15]. As continuums of the above works, we further study fuzzy associative pseudoideal and fuzzy pseudo-π‘Ž ideal in pseudo-𝐡𝐢𝐼 algebras. Note that the notion of pseudo-𝐡𝐢𝐼 algebra in this paper is indeed dual form of original definition in [6]; accordingly, the notion of pseudo-filter (or pseudo-𝐡𝐢𝐼 filter) is the dual form of pseudoideal (or pseudo-𝐡𝐢𝐼 ideal) in [9]. Moreover, for short, the notion of pseudo-filter (or pseudo-𝐡𝐢𝐼 filter) is simply called β€œfilter” in this paper. At first, we recall some basic concepts and properties of pseudo-𝐡𝐢𝐼 algebras. Definition 1 (see [6]). A pseudo-𝐡𝐢𝐼 algebra is a structure (𝑋; ≀, β†’ , 󴁄󴀼, 1), where β€œβ‰€β€ is a binary relation on 𝑋, β€œ β†’ ” and β€œσ΄„σ΄€Όβ€ are binary operations on 𝑋, and β€œ1” is an element of 𝑋, verifying the axioms: for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, (1) 𝑦 β†’ 𝑧 ≀ (𝑧 β†’ π‘₯) 󴁄󴀼 (𝑦 β†’ π‘₯), 𝑦 󴁄󴀼 𝑧 ≀ (𝑧 󴁄󴀼 π‘₯) β†’ (𝑦 󴁄󴀼 π‘₯); (2) π‘₯ ≀ (π‘₯ β†’ 𝑦) 󴁄󴀼 𝑦, π‘₯ ≀ (π‘₯ 󴁄󴀼 𝑦) β†’ 𝑦; (3) π‘₯ ≀ π‘₯; (4) π‘₯ ≀ 𝑦, 𝑦 ≀ π‘₯ β‡’ π‘₯ = 𝑦; (5) π‘₯ ≀ 𝑦 ⇔ π‘₯ β†’ 𝑦 = 1 ⇔ π‘₯ 󴁄󴀼 𝑦 = 1.

2

The Scientific World Journal

If (𝑋; ≀, β†’ , 󴁄󴀼, 1) is a pseudo-𝐡𝐢𝐼 algebra satisfying π‘₯ β†’ 𝑦 = π‘₯ 󴁄󴀼 𝑦 for all π‘₯, 𝑦 ∈ 𝑋, then (𝑋; ≀, β†’ , 󴁄󴀼, 1) is a 𝐡𝐢𝐼-algebra. Proposition 2 (see [6, 9, 10]). Let (𝑋; ≀, β†’ , 󴁄󴀼, 1) be a pseudo-𝐡𝐢𝐼 algebra; then 𝑋 satisfy the following properties (βˆ€π‘₯, 𝑦, 𝑧 ∈ 𝑋): (1) 1 ≀ π‘₯ β‡’ π‘₯ = 1; (2) π‘₯ ≀ 𝑦 β‡’ 𝑦 β†’ 𝑧 ≀ π‘₯ β†’ 𝑧, 𝑦 󴁄󴀼 𝑧 ≀ π‘₯ 󴁄󴀼 𝑧; (3) π‘₯ ≀ 𝑦, 𝑦 ≀ 𝑧 β‡’ π‘₯ ≀ 𝑧; (4) π‘₯ 󴁄󴀼 (𝑦 β†’ 𝑧) = 𝑦 β†’ (π‘₯ 󴁄󴀼 𝑧); (5) π‘₯ ≀ 𝑦 β†’ 𝑧 β‡’ 𝑦 ≀ π‘₯ 󴁄󴀼 𝑧;

Proposition 7. Let πœ‡ be a fuzzy filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. If π‘₯ ≀ 𝑦, then πœ‡(π‘₯) ≀ πœ‡(𝑦), where π‘₯, 𝑦 ∈ 𝑋. As a consequence of the so-called Transfer Principle for Fuzzy Sets in [11], we have the following. Theorem 8 (see [11, 15]). Let 𝑋 be a pseudo-𝐡𝐢𝐼 algebra. Then a fuzzy set πœ‡ : 𝑋 β†’ [0, 1] is a fuzzy filter of 𝑋 if and only if the level set πœ‡π‘‘ = {π‘₯ ∈ 𝑋 | πœ‡(π‘₯) β‰₯ 𝑑} is filter of 𝑋 for all 𝑑 ∈ Im(πœ‡). Theorem 9 (see [15]). Let 𝑋 be a pseudo-𝐡𝐢𝐼 algebra. Then a fuzzy set πœ‡ : 𝑋 β†’ [0, 1] is a fuzzy filter of 𝑋 if and only if it satisfies

(6) π‘₯ β†’ 𝑦 ≀ (𝑧 β†’ π‘₯) β†’ (𝑧 β†’ 𝑦), π‘₯ 󴁄󴀼 𝑦 ≀ (𝑧 󴁄󴀼 π‘₯) 󴁄󴀼 (𝑧 󴁄󴀼 𝑦);

(1) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, π‘₯ ≀ 𝑦 β†’ 𝑧 β‡’ πœ‡(𝑧) β‰₯ min{πœ‡(π‘₯), πœ‡(𝑦)};

(7) π‘₯ ≀ 𝑦 β‡’ 𝑧 β†’ π‘₯ ≀ 𝑧 β†’ 𝑦, 𝑧 󴁄󴀼 π‘₯ ≀ 𝑧 󴁄󴀼 𝑦;

(2) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, π‘₯ ≀ 𝑦 󴁄󴀼 𝑧 β‡’ πœ‡(𝑧) β‰₯ min{πœ‡(π‘₯), πœ‡(𝑦)}.

(8) 1 β†’ π‘₯ = π‘₯, 1 󴁄󴀼 π‘₯ = π‘₯; (9) ((𝑦 β†’ π‘₯) 󴁄󴀼 π‘₯) β†’ π‘₯ = 𝑦 β†’ π‘₯, ((𝑦 󴁄󴀼 π‘₯) β†’ π‘₯) 󴁄󴀼 π‘₯ = 𝑦 󴁄󴀼 π‘₯; (10) π‘₯ β†’ 𝑦 ≀ (𝑦 β†’ π‘₯) 󴁄󴀼 1, π‘₯ 󴁄󴀼 𝑦 ≀ (𝑦 󴁄󴀼 π‘₯) β†’ 1; (11) (π‘₯ β†’ 𝑦) β†’ 1 = (π‘₯ β†’ 1) 󴁄󴀼 (𝑦 󴁄󴀼 1), (π‘₯ 󴁄󴀼 𝑦) 󴁄󴀼 1 = (π‘₯ 󴁄󴀼 1) β†’ (𝑦 β†’ 1); (12) π‘₯ β†’ 1 = π‘₯ 󴁄󴀼 1. Definition 3 (see [9]). A nonempty subset 𝐹 of a pseudo-𝐡𝐢𝐼 algebra 𝑋 is called a pseudo-𝐡𝐢𝐼 filter (briefly, filter) of 𝑋 if it satisfies (F1) 1 ∈ 𝐹; (F2) π‘₯ ∈ 𝐹, π‘₯ β†’ 𝑦 ∈ 𝐹 β‡’ 𝑦 ∈ 𝐹; (F3) π‘₯ ∈ 𝐹, π‘₯ 󴁄󴀼 𝑦 ∈ 𝐹 β‡’ 𝑦 ∈ 𝐹. Definition 4 (see [10]). A nonempty subset 𝐹 of a pseudo-𝐡𝐢𝐼 algebra 𝑋 is called an associative pseudo-𝐡𝐢𝐼 filter (briefly, associative filter) of 𝑋 if it satisfies (1) 1 ∈ 𝐹; (2) π‘₯ β†’ (𝑦 󴁄󴀼 𝑧) ∈ 𝐹 and π‘₯ β†’ 𝑦 ∈ 𝐹 β‡’ 𝑧 ∈ 𝐹; (3) π‘₯ 󴁄󴀼 (𝑦 β†’ 𝑧) ∈ 𝐹 and π‘₯ 󴁄󴀼 𝑦 ∈ 𝐹 β‡’ 𝑧 ∈ 𝐹. Definition 5 (see [10]). A nonempty subset 𝐹 of a pseudo-𝐡𝐢𝐼 algebra 𝑋 is called a pseudo-π‘Ž-filter (briefly, π‘Ž-filter) of 𝑋 if it satisfies (1) 1 ∈ 𝐹; (2) (π‘₯ β†’ 1) 󴁄󴀼 (𝑦 β†’ 𝑧) ∈ 𝐹 and 𝑦 ∈ 𝐹 β‡’ 𝑧 󴁄󴀼 π‘₯ ∈ 𝐹; (3) (π‘₯ 󴁄󴀼 1) β†’ (𝑦 󴁄󴀼 𝑧) ∈ 𝐹 and 𝑦 ∈ 𝐹 β‡’ 𝑧 β†’ π‘₯ ∈ 𝐹. Definition 6 (see [13–15]). A fuzzy set πœ‡ : 𝑋 β†’ [0, 1] is called a fuzzy pseudofilter (briefly, fuzzy filter) of pseudo-𝐡𝐢𝐼 algebra 𝑋 if it satisfies (FF1) πœ‡(1) β‰₯ πœ‡(π‘₯), βˆ€π‘₯ ∈ 𝑋; (FF2) πœ‡(𝑦) β‰₯ min{πœ‡(π‘₯ β†’ 𝑦), πœ‡(π‘₯)}, βˆ€π‘₯, 𝑦 ∈ 𝑋; (FF3) πœ‡(𝑦) β‰₯ min{πœ‡(π‘₯ 󴁄󴀼 𝑦), πœ‡(π‘₯)}, βˆ€π‘₯, 𝑦 ∈ 𝑋.

Definition 10 (see [13, 15]). A fuzzy set πœ‡ : 𝑋 β†’ [0, 1] is called a fuzzy 𝑝-filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋 if it satisfies (FF1) and (FPF1) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(𝑧) β‰₯ min{πœ‡((π‘₯ β†’ 𝑦) 󴁄󴀼 (π‘₯ β†’ 𝑧)), πœ‡(𝑦)}; (FPF2) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(𝑧) β‰₯ min{πœ‡((π‘₯ 󴁄󴀼 𝑦) β†’ (π‘₯ 󴁄󴀼 𝑧)), πœ‡(𝑦)}. Definition 11 (see [13, 15]). A fuzzy set πœ‡ : 𝑋 β†’ [0, 1] is called a fuzzy π‘Ž-filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋 if it satisfies (FF1) and (FaF1) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(𝑧 β†’ π‘₯) β‰₯ min{πœ‡((π‘₯ 󴁄󴀼 1) β†’ (𝑦 󴁄󴀼 𝑧)), πœ‡(𝑦)}; (FaF2) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(𝑧 󴁄󴀼 π‘₯) β‰₯ min{πœ‡((π‘₯ β†’ 1) 󴁄󴀼 (𝑦 β†’ 𝑧)), πœ‡(𝑦)}. Definition 12 (see [15]). A fuzzy set πœ‡ : 𝑋 β†’ [0, 1] is called a fuzzy associative filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋 if it satisfies (FF1) and (FAF1) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(𝑧) β‰₯ min{πœ‡(π‘₯ β†’ (𝑦 󴁄󴀼 𝑧)), πœ‡(π‘₯ β†’ 𝑦)}; (FAF2) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(𝑧) β‰₯ min{πœ‡(π‘₯ 󴁄󴀼 (𝑦 β†’ 𝑧)), πœ‡(π‘₯ 󴁄󴀼 𝑦)}. Definition 13 (see [13, 15]). A fuzzy set πœ‡ : 𝑋 β†’ [0, 1] is called a fuzzy π‘ž-filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋 if it satisfies (FF1) and (FqF1) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(π‘₯ β†’ 𝑧) β‰₯ min{πœ‡((π‘₯ 󴁄󴀼 𝑦) β†’ 𝑧), πœ‡(𝑦)}; (FqF2) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(π‘₯ 󴁄󴀼 𝑧) β‰₯ min{πœ‡((π‘₯ β†’ 𝑦) 󴁄󴀼 𝑧), πœ‡(𝑦)}.

The Scientific World Journal

3

2. New Properties of Fuzzy π‘Ž-Filters and Fuzzy Associative Filters Lemma 14 (see [15]). Let πœ‡ be a fuzzy π‘Ž-filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then πœ‡ satisfies πœ‡ (π‘₯ 󳨀→ 𝑦) β‰₯ πœ‡ ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯) , πœ‡ (π‘₯ 󴁄󴀼 𝑦) β‰₯ πœ‡ ((𝑦 󳨀→ 1) 󴁄󴀼 π‘₯) ,

From this, applying Lemma 15, we get πœ‡(π‘₯ β†’ 𝑦) ≀ πœ‡(π‘₯ 󴁄󴀼 𝑦). Similarly, we can get πœ‡(π‘₯ 󴁄󴀼 𝑦) ≀ πœ‡(π‘₯ β†’ 𝑦). By Definition 1(4), πœ‡(π‘₯ β†’ 𝑦) = πœ‡(π‘₯ 󴁄󴀼 𝑦). (3) For any π‘₯ ∈ 𝑋, applying Proposition 2(12) and Lemma 14, we have πœ‡ ((π‘₯ 󳨀→ 1) 󳨀→ π‘₯) = πœ‡ ((π‘₯ 󴁄󴀼 1) 󳨀→ π‘₯)

(1)

β‰₯ πœ‡ ((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 1)) = πœ‡ (1) . (7)

Lemma 15 (see [15]). Let πœ‡ be a fuzzy π‘Ž-filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then πœ‡ satisfies

By Definition 6(FF1), it follows that πœ‡((π‘₯ β†’ 1) β†’ π‘₯) = πœ‡(1). Similarly, we have πœ‡((π‘₯ 󴁄󴀼 1) 󴁄󴀼 π‘₯) = πœ‡(1). (4) For any π‘₯, 𝑦 ∈ 𝑋, by Proposition 2(6) and Definition 1(1), we have

βˆ€π‘₯, 𝑦 ∈ 𝑋.

πœ‡ (π‘₯) = πœ‡ (π‘₯ 󳨀→ 1) = πœ‡ (π‘₯ 󴁄󴀼 1) ,

βˆ€π‘₯ ∈ 𝑋.

(2)

Theorem 16. Let πœ‡ be a fuzzy π‘Ž-filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then the following statements hold for all π‘₯, 𝑦, 𝑧 ∈ 𝑋: (1) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦), πœ‡(π‘₯ β†’ 𝑦)}, πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦), πœ‡(π‘₯ 󴁄󴀼 𝑦)}; (2) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯ β†’ 𝑦) = πœ‡(π‘₯ 󴁄󴀼 𝑦); (3) for all π‘₯ ∈ 𝑋, πœ‡((π‘₯ β†’ 1) β†’ π‘₯) = πœ‡((π‘₯ 󴁄󴀼 1) 󴁄󴀼 π‘₯) = πœ‡(1); (4) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(π‘₯ β†’ 𝑧) β‰₯ min{πœ‡((π‘₯ 󴁄󴀼 𝑦) β†’ 𝑧), πœ‡(𝑦)}; (5) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡(π‘₯ 󴁄󴀼 𝑧) β‰₯ min{πœ‡((π‘₯ β†’ 𝑦) 󴁄󴀼 𝑧), πœ‡(𝑦)}; (6) for all π‘₯ ∈ 𝑋, πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 1)) = πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 1)) = πœ‡(1); (7) for all π‘₯, 𝑦, 𝑧 ∈ 𝑋, πœ‡((π‘₯ β†’ 𝑦) β†’ 𝑦) β‰₯ πœ‡(π‘₯), πœ‡((π‘₯ 󴁄󴀼 𝑦) 󴁄󴀼 𝑦) β‰₯ πœ‡(π‘₯). Proof. (1) For any π‘₯, 𝑦 ∈ 𝑋, by Proposition 2(6), we have 𝑦 β†’ 1 ≀ (π‘₯ β†’ 𝑦) β†’ (π‘₯ β†’ 1). From this, applying Proposition 7, we get πœ‡ (𝑦 󳨀→ 1) ≀ πœ‡ ((π‘₯ 󳨀→ 𝑦) 󳨀→ (π‘₯ 󳨀→ 1)) .

(3)

Using Definition 6(FF2), we have πœ‡ (π‘₯ 󳨀→ 1) β‰₯ min {πœ‡ ((π‘₯ 󳨀→ 𝑦) 󳨀→ (π‘₯ 󳨀→ 1)) , πœ‡ (π‘₯ 󳨀→ 𝑦)} .

𝑦 󴁄󴀼 1 ≀ (π‘₯ 󴁄󴀼 𝑦) 󴁄󴀼 (π‘₯ 󴁄󴀼 1) ≀ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 π‘₯) 󳨀→ ((π‘₯ 󴁄󴀼 𝑦) 󴁄󴀼 π‘₯) .

(8)

From this, by Theorem 8, we get πœ‡ ((π‘₯ 󴁄󴀼 𝑦) 󴁄󴀼 π‘₯) β‰₯ min {πœ‡ (𝑦 󴁄󴀼 1) , πœ‡ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 π‘₯)} . (9) Applying (3), Lemma 15, and Definition 6(FF1), πœ‡((π‘₯ 󴁄󴀼 𝑦) 󴁄󴀼 π‘₯) β‰₯ πœ‡(𝑦). From this and (2), we get πœ‡((π‘₯ 󴁄󴀼 𝑦) β†’ π‘₯) β‰₯ πœ‡(𝑦). On the other hand, by Definition 1(1), (π‘₯ 󴁄󴀼 𝑦) β†’ π‘₯ ≀ (π‘₯ β†’ 𝑧) 󴁄󴀼 ((π‘₯ 󴁄󴀼 𝑦) β†’ 𝑧). Using Proposition 7 and the above result, we have πœ‡ (𝑦) ≀ πœ‡ ((π‘₯ 󴁄󴀼 𝑦) 󳨀→ π‘₯) ≀ πœ‡ ((π‘₯ 󳨀→ 𝑧) 󴁄󴀼 ((π‘₯ 󴁄󴀼 𝑦) 󳨀→ 𝑧)) .

(10)

Moreover, by (1), we have πœ‡ (π‘₯ 󳨀→ 𝑧) β‰₯ min {πœ‡ ((π‘₯ 󴁄󴀼 𝑦) 󳨀→ 𝑧) , πœ‡ ((π‘₯ 󳨀→ 𝑧) 󴁄󴀼 ((π‘₯ 󴁄󴀼 𝑦) 󳨀→ 𝑧))} . (11)

(4) Therefore,

Thus,

πœ‡ (π‘₯ 󳨀→ 𝑧) β‰₯ min {πœ‡ ((π‘₯ 󴁄󴀼 𝑦) 󳨀→ 𝑧) ,

πœ‡ (π‘₯ 󳨀→ 1) β‰₯ min {πœ‡ ((π‘₯ 󳨀→ 𝑦) 󳨀→ (π‘₯ 󳨀→ 1)) , πœ‡ (π‘₯ 󳨀→ 𝑦)}

(5)

β‰₯ min {πœ‡ (𝑦 󳨀→ 1) , πœ‡ (π‘₯ 󳨀→ 𝑦)} . By Lemma 15, πœ‡(π‘₯ β†’ 1) = πœ‡(π‘₯) and πœ‡(𝑦 β†’ 1) = πœ‡(𝑦). Therefore, πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦), πœ‡(π‘₯ β†’ 𝑦)}. Similarly, we have πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦), πœ‡(π‘₯ 󴁄󴀼 𝑦)}. (2) For any π‘₯, 𝑦 ∈ 𝑋, by Proposition 2(11) and (12), we have (π‘₯ β†’ 𝑦) β†’ 1 = (π‘₯ β†’ 1) 󴁄󴀼 (𝑦 β†’ 1). By Lemma 14, it follows that πœ‡ ((π‘₯ 󳨀→ 𝑦) 󳨀→ 1) = πœ‡ ((π‘₯ 󳨀→ 1) 󴁄󴀼 (𝑦 󳨀→ 1)) ≀ πœ‡ ((𝑦 󳨀→ 1) 󴁄󴀼 π‘₯) ≀ πœ‡ (π‘₯ 󴁄󴀼 𝑦) . (6)

πœ‡ ((π‘₯ 󳨀→ 𝑧) 󴁄󴀼 ((π‘₯ 󴁄󴀼 𝑦) 󳨀→ 𝑧))} (12) β‰₯ min {πœ‡ ((π‘₯ 󴁄󴀼 𝑦) 󳨀→ 𝑧) , πœ‡ (𝑦)} . This means that (4) holds. (5) The proof is similar to (4). (6) For any π‘₯ ∈ 𝑋, by (4), we have πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 1)) β‰₯ min {πœ‡ ((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 1)) , πœ‡ (1)} = min {πœ‡ (1) , πœ‡ (1)} = πœ‡ (1) . (13) It follows that πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 1)) = πœ‡(1). Similarly, πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 1)) = πœ‡(1).

4

The Scientific World Journal

(7) For any π‘₯ ∈ 𝑋, by Definition 1(3), we have π‘₯ ≀ (π‘₯ β†’ 𝑦) 󴁄󴀼 𝑦. From this, (2), and Proposition 7, we get πœ‡ (π‘₯) ≀ πœ‡ ((π‘₯ 󳨀→ 𝑦) 󴁄󴀼 𝑦) = πœ‡ ((π‘₯ 󳨀→ 𝑦) 󳨀→ 𝑦) .

(14)

Similarly, we have πœ‡((π‘₯ 󴁄󴀼 𝑦) 󴁄󴀼 𝑦) β‰₯ πœ‡(π‘₯).

π‘₯ 󴁄󴀼 (π‘₯ 󳨀→ 1) ≀ ((π‘₯ 󳨀→ 1) 󴁄󴀼 (π‘₯ 󳨀→ 𝑦)) 󳨀→ (π‘₯ 󴁄󴀼 (π‘₯ 󳨀→ 𝑦)) .

Lemma 17. Let πœ‡ be a fuzzy associative filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then πœ‡ satisfies πœ‡ (𝑦) β‰₯ πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) , πœ‡ (𝑦) β‰₯ πœ‡ (π‘₯ 󴁄󴀼 (π‘₯ 󳨀→ 𝑦)) ,

This means that πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 1)) = πœ‡(1). Similarly, πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 1)) = πœ‡(1). (2) For any π‘₯, 𝑦 ∈ 𝑋, by Definition 1(1), we have

(15)

βˆ€π‘₯, 𝑦 ∈ 𝑋. Proof. It is easily proved by Definition 12; the proof is omitted.

Applying Theorem 9(1), we get πœ‡ (π‘₯ 󴁄󴀼 (π‘₯ 󳨀→ 𝑦)) β‰₯ min {πœ‡ (π‘₯ 󴁄󴀼 (π‘₯ 󳨀→ 1)) , πœ‡ ((π‘₯ 󳨀→ 1) 󴁄󴀼 (π‘₯ 󳨀→ 𝑦))} . (19) By (1) and Lemma 17, πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 1)) = πœ‡(1), πœ‡(𝑦) β‰₯ πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 𝑦)). Therefore, πœ‡ (𝑦) β‰₯ πœ‡ (π‘₯ 󴁄󴀼 (π‘₯ 󳨀→ 𝑦)) β‰₯ min {πœ‡ (1) , πœ‡ ((π‘₯ 󳨀→ 1) 󴁄󴀼 (π‘₯ 󳨀→ 𝑦))}

Theorem 18. Let πœ‡ be a fuzzy associative filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then the following statements hold: (1) for all π‘₯ ∈ 𝑋, πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 1)) = πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 1)) = πœ‡(1); (2) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(𝑦) β‰₯ πœ‡((π‘₯ β†’ 1) 󴁄󴀼 (π‘₯ β†’ 𝑦)); (3) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(𝑦) β‰₯ πœ‡((π‘₯ 󴁄󴀼 1) β†’ (π‘₯ 󴁄󴀼 𝑦));

(3) It is similar to (2). (4) For any π‘₯, 𝑦 ∈ 𝑋, by (2), we have πœ‡(π‘₯ 󴁄󴀼 𝑦) β‰₯ πœ‡((𝑦 β†’ 1) 󴁄󴀼 (𝑦 β†’ (π‘₯ 󴁄󴀼 𝑦))). On the other hand, applying Definition 1 and Proposition 2, (𝑦 󳨀→ 1) 󴁄󴀼 (𝑦 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) = (𝑦 󳨀→ 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 (𝑦 󳨀→ 𝑦))

(5) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯ β†’ (π‘₯ β†’ 𝑦)) β‰₯ πœ‡(𝑦), πœ‡(π‘₯ 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) β‰₯ πœ‡(𝑦);

= (𝑦 󳨀→ 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 1)

(6) for all π‘₯ ∈ 𝑋, πœ‡(π‘₯) β‰₯ πœ‡((π‘₯ β†’ 1) β†’ 1)), πœ‡(π‘₯) β‰₯ πœ‡((π‘₯ 󴁄󴀼 1) 󴁄󴀼 1)); (7) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯ β†’ (𝑦 β†’ 1)) β‰₯ πœ‡(π‘₯ β†’ 𝑦), πœ‡(π‘₯ 󴁄󴀼 (𝑦 󴁄󴀼 1)) β‰₯ πœ‡(π‘₯ 󴁄󴀼 𝑦); (8) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(𝑦 β†’ π‘₯)) β‰₯ πœ‡(π‘₯ β†’ 𝑦), πœ‡(𝑦 󴁄󴀼 π‘₯)) β‰₯ πœ‡(π‘₯ 󴁄󴀼 𝑦); (9) for all π‘₯ ∈ 𝑋, πœ‡((π‘₯ 󴁄󴀼 1) β†’ π‘₯) = πœ‡((π‘₯ β†’ 1) 󴁄󴀼 π‘₯) = πœ‡(1); (10) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡((π‘₯ β†’ 𝑦) β†’ 𝑦) β‰₯ πœ‡(π‘₯), πœ‡((π‘₯ 󴁄󴀼 𝑦) 󴁄󴀼 𝑦) β‰₯ πœ‡(π‘₯);

β‰₯ π‘₯ 󳨀→ 𝑦. From this and Proposition 7, πœ‡((𝑦 β†’ 1) 󴁄󴀼 (𝑦 β†’ (π‘₯ 󴁄󴀼 𝑦))) β‰₯ πœ‡(π‘₯ β†’ 𝑦). Thus, πœ‡(π‘₯ 󴁄󴀼 𝑦) β‰₯ πœ‡(π‘₯ β†’ 𝑦). Similarly, we can get πœ‡(π‘₯ β†’ 𝑦) β‰₯ πœ‡(π‘₯ 󴁄󴀼 𝑦). Therefore, πœ‡(π‘₯ β†’ 𝑦) = πœ‡(π‘₯ 󴁄󴀼 𝑦). (5) For any π‘₯, 𝑦 ∈ 𝑋, since (by Proposition 2) 𝑦 󴁄󴀼 (π‘₯ 󳨀→ (π‘₯ 󳨀→ 𝑦)) = π‘₯ 󳨀→ (𝑦 󴁄󴀼 (π‘₯ 󳨀→ 𝑦)) = π‘₯ 󳨀→ (π‘₯ 󳨀→ (𝑦 󴁄󴀼 𝑦)) = π‘₯ 󳨀→ (π‘₯ 󳨀→ 1)

(12) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦), πœ‡(π‘₯ β†’ 𝑦)}, πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦), πœ‡(π‘₯ 󴁄󴀼 𝑦)}. Proof. (1) For any π‘₯ ∈ 𝑋 (by Definition 1 and Proposition 2), (π‘₯ 󴁄󴀼 1) 󴁄󴀼 ((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 1)))

then πœ‡(𝑦 󴁄󴀼 (π‘₯ β†’ (π‘₯ β†’ 𝑦))) = πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 1)). By (1), πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 1)) = πœ‡(1); hence, πœ‡(𝑦 󴁄󴀼 (π‘₯ β†’ (π‘₯ β†’ 𝑦))) = πœ‡(1). Moreover, by Definition 6(FF3), we have β‰₯ min {πœ‡ (𝑦 󴁄󴀼 (π‘₯ 󳨀→ (π‘₯ 󳨀→ 𝑦))) , πœ‡ (𝑦)} .

(16)

From this and Lemma 17, we have πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 1)) β‰₯ πœ‡ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 ((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 1)))) = πœ‡ (1) . (17)

(22)

= π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 1) ,

πœ‡ (π‘₯ 󳨀→ (π‘₯ 󳨀→ 𝑦))

= (π‘₯ 󳨀→ 1) 󴁄󴀼 (π‘₯ 󳨀→ 1) = 1.

(21)

= (𝑦 󳨀→ 1) 󴁄󴀼 (π‘₯ 󳨀→ 1)

(11) for all π‘₯ ∈ 𝑋, πœ‡(π‘₯) = πœ‡(π‘₯ β†’ 1) = πœ‡(π‘₯ 󴁄󴀼 1);

= (π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󳨀→ 1)

(20)

= πœ‡ ((π‘₯ 󳨀→ 1) 󴁄󴀼 (π‘₯ 󳨀→ 𝑦)) .

(4) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯ β†’ 𝑦) = πœ‡(π‘₯ 󴁄󴀼 𝑦);

= (π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󳨀→ ((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 1)))

(18)

(23)

Thus, πœ‡ (π‘₯ 󳨀→ (π‘₯ 󳨀→ 𝑦)) β‰₯ min {πœ‡ (𝑦 󴁄󴀼 (π‘₯ 󳨀→ (π‘₯ 󳨀→ 𝑦))) , πœ‡ (𝑦)} = min {πœ‡ (1) , πœ‡ (𝑦)} = πœ‡ (𝑦) . Similarly, πœ‡(π‘₯ 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) β‰₯ πœ‡(𝑦). (6) By (2) and (3), we can get (6).

(24)

The Scientific World Journal

5

(7) For any π‘₯, 𝑦 ∈ 𝑋, by Definition 1, we have 𝑦 β†’ (𝑦 β†’ 1)) ≀ (π‘₯ β†’ 𝑦) β†’ (π‘₯ β†’ (𝑦 β†’ 1)). Applying (1) and Theorem 9, we get πœ‡ (π‘₯ 󳨀→ (𝑦 󳨀→ 1)) β‰₯ min {πœ‡ (𝑦 󳨀→ (𝑦 󳨀→ 1)) , πœ‡ (π‘₯ 󳨀→ 𝑦)}

(25)

= min {πœ‡ (1) , πœ‡ (π‘₯ 󳨀→ 𝑦)} = πœ‡ (π‘₯ 󳨀→ 𝑦) . Similarly, πœ‡(π‘₯ 󴁄󴀼 (𝑦 󴁄󴀼 1)) β‰₯ πœ‡(π‘₯ 󴁄󴀼 𝑦). (8) For any π‘₯, 𝑦 ∈ 𝑋, by Lemma 17, πœ‡(𝑦 β†’ π‘₯) β‰₯ πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ (𝑦 β†’ π‘₯))). And, using Proposition 2(4), we have

(C2) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(𝑦) β‰₯ πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 𝑦)). Proof. Assume that πœ‡ is a fuzzy associative filter of 𝑋; by Lemma 17, (C1) and (C2) hold. Conversely, assume that πœ‡ satisfies conditions (C1) and (C2). For any π‘₯, 𝑦, 𝑧 ∈ 𝑋, by Proposition 2(6), 𝑦 β†’ (π‘₯ β†’ 𝑧) ≀ (π‘₯ β†’ 𝑦) β†’ (π‘₯ β†’ (π‘₯ β†’ 𝑧)). Using Theorem 9, we get πœ‡ (π‘₯ 󳨀→ (π‘₯ 󳨀→ 𝑧)) β‰₯ min {πœ‡ (𝑦 󳨀→ (π‘₯ 󳨀→ 𝑧)) , πœ‡ (π‘₯ 󳨀→ 𝑦)} .

π‘₯ 󴁄󴀼 (π‘₯ 󳨀→ (𝑦 󳨀→ π‘₯)) = π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 (𝑦 󳨀→ π‘₯)) = π‘₯ 󳨀→ (𝑦 󳨀→ (π‘₯ 󴁄󴀼 π‘₯)) = π‘₯ 󳨀→ (𝑦 󳨀→ 1) . (26) Hence, πœ‡(𝑦 β†’ π‘₯) β‰₯ πœ‡(π‘₯ β†’ (𝑦 β†’ 1)). From this and (7), we get πœ‡ (𝑦 󳨀→ π‘₯) β‰₯ πœ‡ (π‘₯ 󳨀→ (𝑦 󳨀→ 1)) β‰₯ πœ‡ (π‘₯ 󳨀→ 𝑦) .

(C1) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(𝑦) β‰₯ πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 𝑦));

(27)

Similarly, πœ‡(𝑦 󴁄󴀼 π‘₯) β‰₯ πœ‡(π‘₯ 󴁄󴀼 𝑦). (9) By (1) and (8), we can get (8). (10) It is similar to the proof of Theorem 16(7). (11) For any π‘₯ ∈ 𝑋, by Lemma 17, πœ‡(π‘₯) β‰₯ πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 π‘₯)) = πœ‡(π‘₯ β†’ 1). On the other hand, using (8), πœ‡(π‘₯ β†’ 1) β‰₯ πœ‡(1 β†’ π‘₯) = πœ‡(π‘₯). Hence, πœ‡(π‘₯) = πœ‡(π‘₯ β†’ 1) = πœ‡(π‘₯ 󴁄󴀼 1). (12) It is similar to the proof of Theorem 16(1).

3. Some Necessary and Sufficient Conditions for Fuzzy π‘Ž-Filters and Fuzzy Associative Filters Checking the proof of Theorem 18 in detail, we know that the proof only applies the properties of fuzzy filters and the conditions in Lemma 17. From this, we can get the following. Lemma 19. Let πœ‡ be a fuzzy filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. If πœ‡ satisfies (C1) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(𝑦) β‰₯ πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 𝑦)); (C2) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(𝑦) β‰₯ πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 𝑦)), then the following statements hold: (C3) for all π‘₯ ∈ 𝑋, πœ‡(π‘₯ β†’ (π‘₯ 󴁄󴀼 1)) = πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 1)) = πœ‡(1); (C4) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯ β†’ 𝑦) = πœ‡(π‘₯ 󴁄󴀼 𝑦); (C5) for all π‘₯ ∈ 𝑋, πœ‡(π‘₯) = πœ‡(π‘₯ β†’ 1) = πœ‡(π‘₯ 󴁄󴀼 1); (C6) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦), πœ‡(π‘₯ β†’ 𝑦)}, πœ‡(π‘₯) β‰₯ min{πœ‡(𝑦), πœ‡(π‘₯ 󴁄󴀼 𝑦)}. Proof. It is similar to Theorem 18 (the conditions (FAF1) and (FAF2) are not applied); the proof is omitted. Theorem 20. Let πœ‡ be a fuzzy filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then πœ‡ is a fuzzy associative filter of 𝑋 if and only if it satisfies

(28)

By Lemma 19(C4) and Proposition 2(4), πœ‡(𝑦 β†’ (π‘₯ β†’ 𝑧)) = πœ‡(𝑦 󴁄󴀼 (π‘₯ β†’ 𝑧)) = πœ‡(π‘₯ β†’ (𝑦 󴁄󴀼 𝑧)). Thus, (P1) πœ‡(π‘₯ β†’ (π‘₯ β†’ 𝑧)) β‰₯ min{πœ‡(π‘₯ β†’ (𝑦 󴁄󴀼 𝑧)), πœ‡(π‘₯ β†’ 𝑦)}. On the other hand, applying Lemma 19(C5), Proposition 2(11), and (12), πœ‡ (π‘₯ 󳨀→ (π‘₯ 󳨀→ 𝑧)) = πœ‡ ((π‘₯ 󳨀→ (π‘₯ 󳨀→ 𝑧)) 󳨀→ 1) = πœ‡ ((π‘₯ 󳨀→ 1) 󴁄󴀼 ((π‘₯ 󳨀→ 1) 󴁄󴀼 (𝑧 󳨀→ 1)))

(29)

= πœ‡ ((π‘₯ 󳨀→ 1) 󴁄󴀼 (𝑧 󳨀→ ((π‘₯ 󳨀→ 1) 󴁄󴀼 1))) = πœ‡ (𝑧 󳨀→ ((π‘₯ 󳨀→ 1) 󴁄󴀼 ((π‘₯ 󳨀→ 1) 󴁄󴀼 1))) . And, by Lemma 19(C6), πœ‡ (𝑧) β‰₯ min {πœ‡ ((π‘₯ 󳨀→ 1) 󴁄󴀼 ((π‘₯ 󳨀→ 1) 󴁄󴀼 1)) , πœ‡ (𝑧 󳨀→ ((π‘₯ 󳨀→ 1) 󴁄󴀼 ((π‘₯ 󳨀→ 1) 󴁄󴀼 1)))} . (30) By Lemma 19(C3) and the above result, we get (P2) πœ‡(𝑧) β‰₯ min{πœ‡(1), πœ‡(π‘₯ β†’ (π‘₯ β†’ 𝑧))} = πœ‡(π‘₯ β†’ (π‘₯ β†’ 𝑧)). Combining (P1) and (P2), we get that πœ‡(𝑧) β‰₯ min{πœ‡(π‘₯ β†’ (𝑦 󴁄󴀼 𝑧)), πœ‡(π‘₯ β†’ 𝑦)}. That is, (FAF1) holds. Similarly, condition (FAF2) holds. Therefore, by Definition 12, πœ‡ is a fuzzy associative filter of 𝑋. Theorem 21 (see [13, 15]). Let πœ‡ be a fuzzy filter of a pseudo𝐡𝐢𝐼 algebra 𝑋. Then πœ‡ is a fuzzy π‘Ž-filter of 𝑋 if and only if it satisfies (a1) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯ β†’ 𝑦) β‰₯ πœ‡((𝑦 󴁄󴀼 1) β†’ π‘₯); (a2) for all π‘₯, 𝑦 ∈ 𝑋, πœ‡(π‘₯ 󴁄󴀼 𝑦) β‰₯ πœ‡((𝑦 β†’ 1) 󴁄󴀼 π‘₯). Theorem 22. Let πœ‡ be a fuzzy filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then the following conditions are equivalent: (i) πœ‡ is a fuzzy π‘Ž-filter of 𝑋; (ii) πœ‡ is a fuzzy associative filter of 𝑋.

6

The Scientific World Journal

Proof. (i) β‡’ (ii). Suppose that πœ‡ is a fuzzy π‘Ž-filter of 𝑋. For any π‘₯, 𝑦 ∈ 𝑋, by Definition 1(1), π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 1) ≀ ((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) 󴁄󴀼 (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) .

(31)

(ii) β‡’ (i). Suppose that πœ‡ is π‘Ž fuzzy associative filter of 𝑋. For any π‘₯, 𝑦 ∈ 𝑋, by Definition 1(1), (𝑦 󴁄󴀼 1) β†’ π‘₯ ≀ (π‘₯ β†’ 𝑦) 󴁄󴀼 (𝑦 󴁄󴀼 1). Applying Proposition 7, we get πœ‡ ((π‘₯ 󳨀→ 𝑦) 󴁄󴀼 (𝑦 󴁄󴀼 1)) β‰₯ πœ‡ ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯) . On the other hand, using Theorem 18(12),

Applying Theorem 16(6) and Proposition 7, we get

πœ‡ (π‘₯ 󳨀→ 𝑦) β‰₯ min {πœ‡ ((𝑦 󴁄󴀼 1) 󳨀→ 𝑦) ,

πœ‡ (1) = πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 1)) ≀ πœ‡ (((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) 󴁄󴀼 (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦))) . (32)

πœ‡ ((π‘₯ 󳨀→ 𝑦) 󴁄󴀼 (𝑦 󴁄󴀼 1))} .

πœ‡ (1) = πœ‡ (((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) 󴁄󴀼 (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦))) . (33) Moreover, by Theorem 16(1),

πœ‡ (((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 𝑦))

(34)

πœ‡ ((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) β‰₯ min {πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) , πœ‡ (1)} = πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) . (35) Using Theorem 16(2), πœ‡((π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) = πœ‡((π‘₯ 󴁄󴀼 1) β†’ (π‘₯ 󴁄󴀼 𝑦)). Thus, (36)

On the other hand, applying Proposition 2(6) and (8), 𝑦 ≀ 1 β†’ 𝑦 ≀ (π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦). From this and Theorem 16(1), we get

πœ‡ (𝑦 󳨀→ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)))} .

(37)

From 𝑦 ≀ (π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦), we have 𝑦 β†’ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) = 1; it follows that πœ‡ (𝑦) β‰₯ min {πœ‡ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) , πœ‡ (1)} = πœ‡ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) .

(43)

Similarly, we can get πœ‡(π‘₯ 󴁄󴀼 𝑦) β‰₯ πœ‡((𝑦 β†’ 1) 󴁄󴀼 π‘₯). By Theorem 21, πœ‡ is a fuzzy π‘Ž-filter of 𝑋. Now, we discuss the relationship between associative filters and π‘Ž-filters of pseudo-𝐡𝐢𝐼 algebras. At first, we give the following results (the proofs are omitted).

Then we get

πœ‡ (𝑦) β‰₯ min {πœ‡ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) ,

(42)

Therefore,

β‰₯ πœ‡ ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯) .

󴁄󴀼 (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦)))} .

πœ‡ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) β‰₯ πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) .

= πœ‡ ((π‘₯ 󳨀→ 𝑦) 󴁄󴀼 (𝑦 󴁄󴀼 1)) .

πœ‡ (π‘₯ 󳨀→ 𝑦) β‰₯ πœ‡ ((π‘₯ 󳨀→ 𝑦) 󴁄󴀼 (𝑦 󴁄󴀼 1))

πœ‡ ((π‘₯ 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 𝑦))

(41)

By Theorem 18(9), πœ‡((𝑦 󴁄󴀼 1) β†’ 𝑦) = πœ‡(1). It follows that πœ‡ (π‘₯ 󳨀→ 𝑦) β‰₯ min {πœ‡ (1) , πœ‡ ((π‘₯ 󳨀→ 𝑦) 󴁄󴀼 (𝑦 󴁄󴀼 1))}

It follows that

β‰₯ min {πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) ,

(40)

(38)

Therefore,

Proposition 23. A nonempty subset 𝐹 of pseudo-𝐡𝐢𝐼 algebra 𝑋 is a filter (associative filter, π‘Ž-filter) of 𝑋 if and only if the characteristic function πœ’πΉ of 𝐹 is a fuzzy filter (fuzzy associative filter, fuzzy π‘Ž-filter) of 𝑋. Proposition 24. Let 𝑋 be a pseudo-𝐡𝐢𝐼 algebra. Then a fuzzy set πœ‡ : 𝑋 β†’ [0, 1] is a fuzzy associative filter (fuzzy π‘Ž-filter) of 𝑋 if and only if the level set πœ‡π‘‘ = {π‘₯ ∈ 𝑋 | πœ‡(π‘₯) β‰₯ 𝑑} is associative filter (π‘Ž-filter) of 𝑋 for all 𝑑 ∈ Im(πœ‡). In fact, the above proposition is a consequence of the socalled Transfer Principle for Fuzzy Sets in [11]. Combining Propositions 23 and 24, Theorems 8 and 22, we get the following. Theorem 25. Let 𝐹 be a filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then the following conditions are equivalent: (i) 𝐹 is an π‘Ž-filter of 𝑋; (ii) 𝐹 is an associative filter of 𝑋. Remark 26. In [10], the authors proved Theorem 18, but the proof is wrong (from β€œConversely . . .” to the end of proof). In fact, by Theorem 25, Theorem 4 in [10] is true.

πœ‡ (𝑦) β‰₯ πœ‡ ((π‘₯ 󴁄󴀼 1) 󴁄󴀼 (π‘₯ 󴁄󴀼 𝑦)) β‰₯ πœ‡ (π‘₯ 󳨀→ (π‘₯ 󴁄󴀼 𝑦)) . (39)

Finally, we discuss the relationship among fuzzy associative filters, fuzzy π‘Ž-filters, and fuzzy π‘ž-filters in pseudo-𝐡𝐢𝐼 algebras.

This means that (C1) holds. Similarly, πœ‡(𝑦) β‰₯ πœ‡(π‘₯ 󴁄󴀼 (π‘₯ β†’ 𝑦)). By Theorem 20, πœ‡ is a fuzzy associative filter of 𝑋.

Lemma 27. Let πœ‡ be a fuzzy 𝑝-filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then πœ‡ satisfies

The Scientific World Journal

7

(1) for all π‘₯ ∈ 𝑋, πœ‡(π‘₯) = πœ‡((π‘₯ β†’ 1) 󴁄󴀼 1);

From this and Lemma 27(2),

(2) for all π‘₯ ∈ 𝑋, πœ‡(((π‘₯ β†’ 1) 󴁄󴀼 1) 󴁄󴀼 π‘₯) = πœ‡(1).

πœ‡ ((π‘₯ 󴁄󴀼 ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯)) 󳨀→ 𝑦)

Proof. (1) For any π‘₯ ∈ 𝑋, by Definition 10(FPF1), we have πœ‡ (π‘₯) β‰₯ min {πœ‡ ((π‘₯ β†’ 1) 󴁄󴀼 (1 β†’ 1)) , πœ‡ (1)} = πœ‡ ((π‘₯ β†’ 1) 󴁄󴀼 1) .

(44)

((((π‘₯ 󳨀→ 1) 󴁄󴀼 1) 󴁄󴀼 π‘₯) 󳨀→ 1) 󴁄󴀼 1 = ((((π‘₯ 󳨀→ 1) 󴁄󴀼 1) 󴁄󴀼 π‘₯) 󳨀→ 1) 󳨀→ 1

Therefore,

β‰₯ min {πœ‡ (1) , πœ‡ ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯)} = πœ‡ ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯) . (50) This means that Theorem 21(a1) holds. Similarly, we can prove (a2). By Theorem 21, we know that πœ‡ is a fuzzy π‘Ž-filter of 𝑋.

Conflict of Interests

= ((((π‘₯ 󳨀→ 1) 󴁄󴀼 1) 󴁄󴀼 π‘₯) 󴁄󴀼 1) 󳨀→ 1

= ((((π‘₯ 󳨀→ 1) 󴁄󴀼 1) 󳨀→ 1) 󳨀→ (π‘₯ 󴁄󴀼 1)) 󳨀→ 1

(49)

πœ‡ (π‘₯ 󳨀→ 𝑦)

And, using Definition 1(2) and Proposition 7, πœ‡((π‘₯ β†’ 1) 󴁄󴀼 1) β‰₯ πœ‡(π‘₯). It follows that πœ‡(π‘₯) = πœ‡((π‘₯ β†’ 1) 󴁄󴀼 1). (2) For any π‘₯ ∈ 𝑋, by Proposition 2(11), (12), and (9), we have

= ((((π‘₯ 󳨀→ 1) 󴁄󴀼 1) 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 1)) 󳨀→ 1

= πœ‡ (((𝑦 󴁄󴀼 1) 󳨀→ 1) 󳨀→ 𝑦) = πœ‡ (1) .

(45)

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

= ((π‘₯ 󳨀→ 1) 󳨀→ (π‘₯ 󴁄󴀼 1)) 󳨀→ 1

This work was supported by National Natural Science Foundation of China (Grant no. 61175044) and Innovation Program of Shanghai Municipal Education Commission (no. 13ZZ122).

= ((π‘₯ 󳨀→ 1) 󳨀→ (π‘₯ 󳨀→ 1)) 󳨀→ 1 = 1 󳨀→ 1 = 1. From this and (1), we get πœ‡ (((π‘₯ 󳨀→ 1) 󴁄󴀼 1) 󴁄󴀼 π‘₯) = πœ‡ (((((π‘₯ 󳨀→ 1) 󴁄󴀼 1) 󴁄󴀼 π‘₯) 󳨀→ 1) 󴁄󴀼 1) = πœ‡ (1) .

References (46)

This means that (2) holds. Theorem 28. Let πœ‡ be a fuzzy filter of a pseudo-𝐡𝐢𝐼 algebra 𝑋. Then the following conditions are equivalent: (1) πœ‡ is a fuzzy π‘Ž-filter of 𝑋; (2) πœ‡ is both a fuzzy 𝑝-filter and a fuzzy π‘ž-filter of 𝑋. Proof. Assume that πœ‡ is a fuzzy π‘Ž-filter of 𝑋. It is easy to prove that πœ‡ is both a fuzzy 𝑝-filter and a fuzzy π‘ž-filter of 𝑋. Conversely, let πœ‡ be both a fuzzy 𝑝-filter and fuzzy π‘ž-filter of 𝑋. For any π‘₯, 𝑦 ∈ 𝑋, by Definition 13(FqF1), we have πœ‡ (π‘₯ 󳨀→ 𝑦) β‰₯ min {πœ‡ ((π‘₯ 󴁄󴀼 ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯)) 󳨀→ 𝑦) ,

(47)

πœ‡ ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯) } . And, by Proposition 2(4), (π‘₯ 󴁄󴀼 ((𝑦 󴁄󴀼 1) 󳨀→ π‘₯)) 󳨀→ 𝑦 = ((𝑦 󴁄󴀼 1) 󳨀→ (π‘₯ 󴁄󴀼 π‘₯)) 󳨀→ 𝑦 = ((𝑦 󴁄󴀼 1) 󳨀→ 1) 󳨀→ 𝑦.

(48)

[1] D. M. Gabbay, C. J. Hogger, and J. A. Robinson, Handbook of Logic in Artificial Intelligence and Logic Programming, Oxford University Press, 1994. [2] K. IsΒ΄eki, β€œAn algebra related with a propositional calculus,” Proceedings of the Japan Academy, vol. 42, no. 1, pp. 26–29, 1966. [3] X. Zhang, β€œBCC-algebras and residuated partially-ordered groupoid,” Mathematica Slovaca, vol. 63, no. 3, pp. 397–410, 2013. [4] X. Ma, J. Zhan, and Y. B. Jun, β€œNew types of fuzzy ideals of BCIalgebras,” Neural Computing and Applications, vol. 21, pp. 19–27, 2012. [5] X.-H. Zhang and W. H. Li, β€œOn pseudo-BL algebras and BCCalgebras,” Soft Computing, vol. 10, no. 10, pp. 941–952, 2006. [6] W. A. Dudek and Y. B. Jun, β€œPseudo-BCI algebras,” East Asian Mathematical Journal, vol. 24, no. 2, pp. 187–190, 2008. [7] G. Georgescu and A. Iorgulescu, β€œPseudo-BCK algebras: an extension of BCK algebras,” in Combinatorics, Computability and Logic, C. S. Calude, M. J. Dinneen, and S. Sburlan, Eds., pp. 97–114, Springer, London, UK, 2001. [8] X. Zhang, Y. Lu, and X. Mao, β€œT-type pseudo-BCI algebras and T-type pseudo-BCI filters,” in Proceedings of the IEEE International Conference on Granular Computing (GrC ’10), pp. 839–844, August 2010. [9] Y. B. Jun, H. S. Kim, and J. Neggers, β€œOn pseudo-BCI ideals of pseudo-BCT algebras,” Matematicki Vesnik, vol. 58, no. 1-2, pp. 39–46, 2006. [10] K. J. Lee and C. H. Park, β€œSome ideals of pseudo BCI-algebras,” Journal of Applied Mathematics & Informatics, vol. 27, no. 1-2, pp. 217–231, 2009.

8 [11] M. Kondo and W. A. Dudek, β€œOn the transfer principle in fuzzy theory,” Mathware & Soft Computing, vol. 12, no. 1, pp. 41–55, 2005. [12] W. Wang and X.-L. Xin, β€œOn fuzzy filters of pseudo BLalgebras,” Fuzzy Sets and Systems, vol. 162, no. 1, pp. 27–38, 2011. [13] A. Gilani and B. N. Waphare, β€œOn pseudo a-ideal of pseudo-BCI algebras,” Scientia Magna, vol. 3, no. 2, pp. 50–59, 2007. [14] Y. B. Jun and S. Z. Song, β€œFuzzy pseudo-ideals of pseudo-BCK algebras,” Journal of Applied Mathematics and Computing, vol. 12, no. 1-2, pp. 243–250, 2003. [15] K. J. Lee, β€œFuzzy ideals of pseudo BCI-algebras,” Journal of Applied Mathematics & Informatics, vol. 27, no. 3-4, pp. 795–807, 2009.

The Scientific World Journal

On some fuzzy filters in pseudo-BCI algebras.

Some new properties of fuzzy associative filters (also known as fuzzy associative pseudo-filters), fuzzy p-filter (also known as fuzzy pseudo-p-filter...
532KB Sizes 0 Downloads 2 Views